10.1002/anie.202009278
Angewandte Chemie International Edition
RESEARCH ARTICLE
upon ethynylaniline adsorption over Au250 is probably because in
the ground-state Au250[C8H6N(EA)]H, the spin-polarized C8H6N
adsorbate back-donates electron to the catalyst. Therefore, the
S2P5 valence occupancy of the fresh Au250 catalyst is essentially
retained despite the dissociative adsorption of ethynylaniline,
which might avoid severe destabilization. Note that the ground
state of Au250[C8H6N(EA)]H is 2.5 kcal mol-1 lower in energy than
a low-lying excited state with non-spin-polarized adsorbates
where the electron transfer results in fractional valence
We acknowledge financial support from National Natural Science
Foundation of China (21773109, 91845104, U1930402).
Keywords: nanocluster • catalysis • valence electron • activity •
lability
[1]
Nature 2015, 524, 330–334.
[2] A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed.
2011, 50, 11062–11087.
J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff, D. W. C. MacMillan,
occupancy
like
those
of
Au25+[C8H6N(EA)]H
and
Au25−[C8H6N(EA)]H (Figure S14). The different tendencies for
intramolecular proton transfer for CAT[C8H6N(EA)]H, indicated by
deprotonation energies, is also evident from electron transfer
behaviors (Figure 7b). For the full deprotonation of
Au25−[C8H6N(EA)]H to form Au25−[C8H5N(EA)]−H, the resultant
excessive electron resides on the C8H5N adsorbate due to the full
S2P6 “valence-shell” of Au25− repelling the excessive electron, so
this reaction is similar to gas-phase reaction without catalyst. For
[3]
[4]
Q. Lin, T. Diao, J. Am. Chem. Soc. 2019, 141, 17937–17948.
P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D.
Kornberg, Science 2007, 318, 430–433.
[5]
R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346–
S. Takano, S. Hasegawa, M. Suyama, T. Tsukuda, Acc. Chem. Res.
10413.
[6]
2018, 51, 3074–3083.
[7]
J. J. Li, Z. J. Guan, Z. Lei, F. Hu, Q. M. Wang, Angew. Chem. Int. Ed.
2019, 58, 1083–1087.
0
+
[8]
Q. Yao, T. Chen, X. Yuan, J. Xie, Acc. Chem. Res. 2018, 51, 1338–
the Au25 and Au25 cases, intramolecular electron transfer is
found (Figure 7b), where electron is transferred from the
adsorbates to the cluster (> 0.5 e−) to combine with the valence
hole there. This may stabilize the deprotonation product by
1348.
[9]
H. Shen, G. Deng, S. Kaappa, T. Tan, Y. Z. Han, S. Malola, S. C. Lin,
B. K. Teo, H. Häkkinen, N. Zheng, Angew. Chem. Int. Ed. 2019, 58, 17731–
17735.
+
changing the valence occupancy of the Au25 core. For the Au25
[10] H. Qian, D. E. Jiang, G. Li, C. Gayathri, A. Das, R. R. Gil, R. Jin, J. Am.
Chem. Soc. 2012, 134, 16159–16162.
system the recombination (S2P4 → S2P5) occurs naturally due to
the cationic nature, as well as the low S2P4 valence occupancy, of
the cluster. For the Au250 reaction, the injection of the excessive
electron into the catalyst (S2P5 → S2P6) is driven by the high
thermodynamic stability of the shell-closing S2P6 occupancy. In
the following reaction steps, as proton is transferred back to
alkynyl-C of the adsorbate followed by a spontaneous cyclization
to form CAT[C8H6N(ID)]H, the electronic structure of the cluster is
reverted back to a state similar to that of CAT[C8H6N(EA)]H, via a
reverse intramolecular electron transfer from Au25 to the
adsorbates.
[11] K. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee, D. E. Jiang, D. Lee, Nat.
Commun. 2017, 8, 14723.
[12] X. Cai, G. Saranya, K. Shen, M. Chen, R. Si, W. Ding, Y. Zhu, Angew.
Chem. Int. Ed. 2019, 58, 9964–9968.
[13] H. Zhang, H. Liu, Z. Tian, D. Lu, Y. Yu, S. Cestellos-Blanco, K. K.
Sakimoto, P. Yang, Nat. Nanotechnol. 2018, 13, 900–905.
[14] S. Zhuang, D. Chen, L. Liao, Y. Zhao, N. Xia, W. Zhang, C. Wang, J.
Yang, Z. Wu, Angew. Chem. Int. Ed. 2020, 59, 3073–3077.
[15] Y. Zhu, H. Qian, B. A. Drake, R. Jin, Angew. Chem. Int. Ed. 2010, 49,
1295–1298.
[16] Y. Tan, X. Liu, L. Zhang, A. Wang, L. Li, X. Pan, S. Miao, M. Haruta, H.
Wei, H. Wang, F. Wang, X. Wang, T. Zhang, Angew. Chem. Int. Ed. 2017, 56,
2709–2713.
0
Overall, doublet nature of Au25 allows for charge
redistribution between the cluster and the adsorbate, which helps
to prevent fractional occupancies deviating from S2P5 occupancy
to promote the dissociative adsorption of reactants and better
initialize the hydroamination, and also enables intramolecular
electron transfer from adsorbates to facilitate the intramolecular
[17] H. Chong, P. Li, S. Wang, F. Fu, J. Xiang, M. Zhu, Y. Li, Sci. Rep.
2013, 3, 3214.
[18] Y. Lu, Y. Jiang, X. Gao, W. Chen, Chem. Commun. 2014, 50, 8464–
8467.
[19] C. Zhang, Y. Chen, H. Wang, Z. Li, K. Zheng, S. Li, G. Li, Nano Res.
2018, 11, 2139–2148.
+
proton transfer. The Au25 system also benefits from the
+
[20] J. Zhang, Y. Zhou, K. Zheng, H. Abroshan, D. R. Kauffman, J. Sun, G.
Li, Nano Res. 2018, 11, 5787–5798.
intramolecular electron transfer mechanism, and thus Au25
exhibits better activity than Au25−, but the catalytic performance of
Au25+ is likely limited by its lability under reaction conditions.
[21] M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A.
Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, R. M. Lambert, Nature
2008, 454, 981–983.
Conclusions
[22] X. Kang, H. Chong, M. Zhu, Nanoscale 2018, 10, 10758–10834.
[23] M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am.
Chem. Soc. 2008, 130, 5883–5885.
In summary, our results indicate that the catalytic properties
of the three Au25 nanoclusters can be ordained by the valence
electrons originating from the Au 6s orbital. The Au250 nanocluster
shows the best performance, while the donation of an electron to
[24] M. Zhu, W. T. Eckenhoff, T. Pintauer, R. Jin, J. Phys. Chem. C 2008,
112, 14221–14224.
[25] Z. Liu, M. Zhu, X. Meng, G. Xu, R. Jin, J. Phys. Chem. Lett. 2011, 2,
2104–2109.
0
Au25 results in the loss in activity and the dislodgment of an
electron from Au250 causes the decay in stability. The correlation
of the free valence electrons and physicochemical properties of
nanoclusters may not only facilitate the rational design and
synthesis of nanoclusters, but also stimulate the future research
on controlling heterogeneous catalysis at a single-electron level.
[26] A. Venzo, S. Antonello, J. A. Gascón, I. Guryanov, R. D. Leapman, N.
V. Perera, A. Sousa, M. Zamuner, A. Zanella, F. Maran, Anal. Chem. 2011,
83, 6355–6362.
[27] C. M. Aikens, J. Phys. Chem. Lett. 2011, 2, 99–104.
[28] M. A. Tofanelli, C. J. Ackerson, J. Am. Chem. Soc. 2012, 134, 16937–
16940.
[29] D. R. Kauffman, D. Alfonso, C. Matranga, P. Ohodnicki, X. Deng, R. C.
Siva, C. Zeng, R. Jin, Chem. Sci. 2014, 5, 3151–3157.
[30] S. Antonello, N. V. Perera, M. Ruzzi, J. A. Gascón, F. Maran, J. Am.
Chem. Soc. 2013, 135, 15585–15594.
Acknowledgements
6
This article is protected by copyright. All rights reserved.