10.1002/anie.201808846
Angewandte Chemie International Edition
COMMUNICATION
[3] Y. Chen, C. Tan, H. Zhang, L. Wang, Chem. Soc. Rev. 2015, 44, 2681-
2701.
[4] D. Chimene, D. L. Alge, A. K. Gaharwar, Adv. Mater. 2015, 27, 7261-7284.
[5] R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Adv. Mater. 2016, 28,
6052-6064.
other reported tyrosinase biosensors based on 2D materials (see
Supporting Information).
[6] W. Wen, Y. Song, X. Yan, C. Zhu, D. Du, S. Wang, A. M. Asiri, Y. Lin, Mater.
Today, 2017, doi: j.mattod.2017.09.001.
[7] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev. 2012, 112,
2739-2779.
[8] C. C.; Mayorga‐Martinez, B. Khezri, A. Y. S. Eng, Z. Sofer, P. Ulbrich, M.
Pumera, Adv. Funct. Mater. 2016, 26, 4094-4098.
[9] M. Pumera Trends Anal. Chem. 2017, 93, 1-6.
[10] R. J. Toh, C. C. Mayorga‐Martinez, Z. Sofer, M.Pumera, Adv. Funct. Mater.
2017, 27, 1604923 1-8.
[11] M. Z. M. Nasir, C. C. Mayorga-Martinez, Z. Sofer, M. Pumera, ACS Nano,
2017, 11, 5774-5784.
[12] C. C. Mayorga-Martinez, N. M. Latiff, A. Y. S. Eng, Z. Sofer, M. Pumera,
Anal. Chem. 2016, 88, 10074-10079.
[13] R. Gusmão, Z. Sofer, M. Pumera Angew.Chem. Int. Ed. 2017, 56,8052-
8072.
[14] S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T.
Jung, Adv. Mater. 2016, 28, 7020-7028.
[15] W. Lei, G.Liu, J. Zhang, M.Liu, Chem. Soc. Rev., 2017, 46, 3492-3509.
[16] M. Z. Rahman, C. W. Kwong, K. Davey, S. Z. Qiao, Energy Environ. Sci.,
2016, 9, 709-728.
Figure 3. (A) Chronoamperometry response during the addition of different
phenol concentrations at −5 mV in 0.1 M PBS pH 6.5.
In summary, we fabricated a biosensor based on thin nanosheets
of 2D layered pnictogens (phosphorene, arsenene, antimonene,
and bismuthene) obtained by shear force exfoliation as a platform
for the detection of phenol. Exfoliated pnictogens undergo
predominantly a downsizing process alongside with delamination
to thin nanosheets. From the set of tested layered pnictogen,
antimonene exhibited the highest degree of exfoliation and the
lowest oxidation-to-bulk ratio. Simultaneously, the phenol
biosensor based on antimonene shows enhanced analytical
performance in terms of linearity, sensitivity, selectivity, and
reproducibility compared with sensors based on other exfoliated
group VA elements. The improved electrocatalytic reduction of
phenol observed for the 2D layered antimonene/Tyr/Glu
configuration offers a feasible mean toward its detection in the
presence common interferents and in real samples. The
antimonene/Tyr/Glu exhibited a phenol LOQ of 850 nM and an
LOD of 255 nM, 10 times below its recommended limit.[33] The
proposed exfoliated pnictogen-based biosensors showcases the
great potential of these type of monoelemental layered materials
in future biomedical and environmental sensing applications.
[17] M. Fortin-Deschênes, O. Waller, T. O. Mentes,̧ A. Locatelli, S. Mukherjee,
F. Genuzio, P. L. Levesque, A. Hebert, R. Martel, O. Moutanabbir, Nano
Lett. 2017, 17, 4970-4975.
[18] M. Pumera, Z. Sofer, Adv. Mater. 2017, 29, 1605299 (2-8).
[19] L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj,
B. Dong, Y. Xiang, F. Xing, D. Fan, H. Zhang, Laser Photonics Rev. 2018,
12, 1700221 (1-10).
[20] L. Lu, W. Wang, L. Wu, X. Jiang, Y. Xiang, J. Li, D. Fan, H. Zhang, ACS
Photonics, 2017, 4, 2852-2861.
[21] R. Gusmão, Z. Sofer, D. Bouša, M. Pumera Angew. Chem. Int. Ed. 2017,
56, 14417-14422.
[22] W. Tao, X. Ji, X. Xu, M. A. Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z.
Bharwani, Z. Guo, J. Shi, O. C. Farokhzad, Angew. Chem. Int. Ed. 2017,
56, 11896-11900.
[23] R. Gusmão, Z. Sofer, D. Bouša, M.Pumera, ACS Appl. Energy Mater. 2018,
1, 503-509.
[24] Z. Liu, B. Liu, J. Kong, J. Deng, Anal. Chem. 2000, 72, 4707-4712.
[25] C. Nitsche, M. C. Mahawaththa, W. Becker, T. Huber, G. Otting, Chem.
Commun., 2017, 53, 10894-10897.
[26] J. L. Webb, In Enzyme and Metabolic Inhibitors Academic Press: New York,
1966; Vol. III, p 595.
[27] S. Shen, X. F. Li, W. R. Cullen, M. Weinfeld, X. C. Le, Chem. Rev., 2013,
113, 7769- 7792.
[28] V. S. Chang, S. S. Teo, Int. Food Res. J. 2016, 23, 2370-2373.
[29] R. E. Gyurcsányi, Z. Vágföldi, K. Tóth, G. Nagy, Electroanalysis 1999, 11,
712-718.
[30] Q. Lin, Q. Li, C. Batchelor-McAuley, R. G. Compton, J. Phys. Chem. C,
2015, 119, 1489−1495.
Acknowledgements
[31] L. Chen, X. Li, E. E. L. Tanner, R. G. Compton, Chem. Sci., 2017, 8, 4771-
4778.
[32] S. J. Kulkarni, R. W. Tapre, S. V. Patil, M. B. Sawarkar, Procedia Eng. 2013,
51, 300-307.
IPCS International Programme on Chemical Safety, Health and Safety
Guide No. 88, Phenol Health and Safety Guide, World Health Organization,
Geneva 1994 (accessed 5 March 2018).
Research was supported by the project Advanced Functional
Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444
financed by the EFRR). Z.S. is supported by the Czech Science
Foundation (GACR No. 16-05167S). This work was created with
the financial support of the Neuron Foundation for science support
(Z.S.).
Keywords: Pnictogen, phosphorene, monoelemental layered
material, electrochemical biosensor, toxic compound, phenol
biosensor
[1] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S.
Han, G.-H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017,117, 6225-6331.
[2] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Mater.
Today 2017, 20, 116-130.
This article is protected by copyright. All rights reserved.