required for DNA cleavage.4,5 Recently, we reported that
simple, commercially available benzotriazoles when com-
bined with a DNA recognition subunit can upon photoacti-
vation cleave DNA in a potent and selective fashion.5 We
have now examined the utility of haloarenes as radical
progenitors for DNA cleavage and report herein that these
readily available compounds upon excitation6 are effective
DNA cleaving agents.
and as a DNA surrogate. In all cases, the debrominated
product, acetophenone, was the major compound produced.
In accord with the intermediacy of an aryl radical, when the
photolysis of 4′-bromoacetophenone was conducted in THF-
d8, the monodeuterated product (Scheme 1)was obtained in
15 min in 57% yield along with unreacted starting material
(22%).
Our studies are based on the observation that excitation
of a haloarene can lead to homolytic cleavage of a carbon-
halogen bond, thereby generating a phenyl radical,7 poten-
tially capable of causing single-stranded lesions to DNA. By
attaching a suitable haloarene to a DNA recognition element,
it was expected that this radical generation could be localized
to specific sites on DNA.8 As a first test of this concept for
DNA cleaving agents, we elected to use 4′-bromoaceto-
phenone derivatives linked to synthetic oligopeptides,
pyrrolecarboximides,9 as shown in Figure 1.
Scheme 1
Having established the utility of 4′-bromoacetophenone
as an aryl radical progenitor, we next sought to attach this
subunit to a series of pyrrolecarboxamide-based DNA minor
groove binders. The pyrrole-linked 4′-bromoacetophenone
conjugates were synthesized as shown in Scheme 2. 3-(4′-
Scheme 2
Figure 1. 4′-Bromoacetophenone-pyrrolecarboxamide conjugates
as photoinducible DNA cleaving agents.
As a reference point for this study, we investigated the
ability of simple haloacetophenones to abstract hydrogen
atoms upon excitation, a required event for DNA cleavage.
The photolytic behavior of 4′-bromoacetophenone is repre-
sentative. The photolyses were performed by using a
medium-pressure mercury arc lamp equipped with a Pyrex
filter under anaerobic conditions. THF was used as solvent
Bromobenzoyl)propanoic acid was prepared by the Friedel-
Crafts succinoylation of bromobenzene and coupled with
pyrrole polyamides 2-4, prepared from N-methylpyrrole
(4) Bregant, T. M.; Groppe, J.; Little, R. D. J. Am. Chem. Soc. 1994,
116, 3635-3636. Jebaratman, D. J.; Kugabalasooriar, S.; Chen, H.; Arya,
D. P. Tetrahedron Lett. 1995, 36, 3123-3126. Griffiths, J.; Murphy, J. A.
J. Chem. Soc., Chem. Commun. 1992, 24-26. Sullivan, R. W.; Coghlan,
V. M.; Munk, S. A.; Reed, M. W.; Moore, H. W. J. Org. Chem. 1994, 59,
2276-2278. Mohler, D. L.; Dain, D. R.; Kerekes, A. D.; Nadler, W. R.;
Scott, T. L. Bioorg. Med. Chem. Lett. 1998, 8, 871-874.
(5) Wender, P. A.; Touami, S. M.; Alayrac, C.; Philipp, U. C. J. Am.
Chem. Soc. 1996, 118, 6522-6523. Touami, S. M.; Poon, C. C.; Wender,
P. A. J. Am. Chem. Soc. 1997, 119, 7611-7612.
(6) (a) Matsumoto, T.; Sakai, Y.; Toyooka, K.; Shibuya, M. Heterocycles
1992, 33, 135-138. (b) Sakai, Y.; Matsumoto, T.; Tanaka, A.; Shibuya,
M. Heterocycles 1993, 36, 565-573. Matsumoto, T.; Utsumi, Y.; sakai,
Y.; Toyooka, K.; Shibuya, M. Heterocycles 1992, 34, 1697-1702. (c)
Quada, J. C., Jr.; Levy, M. J.; Hecht, S. M. J. Am. Chem. Soc. 1993, 115,
12171-12172. (d) Martin, R. F.; Kelly, D. P.; Roberts, M.; Nel, P.; Tursi,
J.; Denison, L.; Rose, M.; Reum, M.; Pardee, M. Int. J. Radiat. Biol. 1994,
66, 517. (e) Chen, T.; Voelk, E.; Platz, M. S.; Goodrich, R. P. Photochem.
Photobiol. 1996, 64, 622.
(7) Hwang, H. J.; El-Sayed, M. A. J. Chem. Phys. 1992, 96, 856-858.
Wagner, P. J.; Sedon, J. Waite, C.; Gudmundsdottir, A. J. Am. Chem. Soc.
1994, 116, 10284-10285. Wagner, P. J.; Sedon, J. H.; Gudmundsdottir,
A. J. Am. Chem. Soc. 1996, 118, 746-754.
(8) For lead references, see: Bouziane, M.; Ketterle, C.; Helissey, P.;
Herfeld, P.; Le Bret, M.; Giorgi-Renault, S.; AuClair, C. Biochemistry 1995,
34, 14051-14058. Boutorine, A. S.; Brault, D.; Takasugi, M.; Delgado,
O. Helene, C. J. Am. Chem. Soc. 1996, 118, 9469-9476. Nakamura, E.;
Tokuyama, H.; Yamago, S.; Shiraki, T.; Sugiura, Y. Bull. Chem. Soc. Jpn.
1996, 69, 2143-2151. Frier, C.; Mouscadet, J. F.; Decout, J. L.; Auclair,
C.; Fontecave, M. Chem. Commun. 1998, 2457-2458. Bailly, C.; Chaires,
J. B. Bioconjugate Chem. 1998, 9, 513-538. Ninomiya, K.; Sugiyama, T.;
Kuroda, R. Nucleic Acids Symp. Ser. 1998, 39, 231-232. Hashimoto, S.;
Nakamura, Y. Chem. Pharm. Bull. 1998, 46, 1941-1943. Herman, D. M.;
Turner, J. M.; Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. 1999, 121,
1121-1129.
(9) (a) Carrondo, M. A. A. F. de C. T.; Coll, M.; Aymami, J.; Wang, A.
H.-J.; van der Marel, G. A.; van Boom, J. H.; Rich, A. Biochemistry 1989,
28, 7849-7859. (b) Chen, S.-M.; Leupin, W.; Rance, M.; Chazin, W. J.
Biochemistry 1992, 31, 4406-4413. (c) Edwards, K. J.; Jenkins, T. C.;
Neidle, S. Biochemistry 1992, 31, 7104-7109. (d) Matsumoto, T.; Toyooka,
K.; Nishiwaki, E.; Shibuya, M. Heterocycles 1990, 31, 1629-1633. (e)
Nishiwaki, E.; Lee, H.; Matsumoto, T.; Toyooka, K.: Sakurai, H.; Shibuya,
M. Tetrahedron Lett. 1990, 31, 1299-1302. (f) Parrick, J.; Porssa, M.;
Jenkins, T. C. J. Chem. Soc., Perkin Trans. 1 1993, 2681-2685.
2118
Org. Lett., Vol. 1, No. 13, 1999