Regularities of thermal decay of metal clusters
Russ.Chem.Bull., Int.Ed., Vol. 52, No. 1, January, 2003
115
References
1
2
3
. M. L. Steigerwald and L. E. Brus, Acc. Chem. Res.,
990, 23, 83.
. S. V. Larionov and S. M. Zemskova, Ros. Khim. Zh., 1996,
0, 171 [Mendeleev. Chem. J., 1996, 40 (Engl. Transl.)].
. R. Seidel, B. Schnautz, and G. Henkel, Angew. Chem., Int.
Ed. Engl., 1996, 35, 1710.
1
4
When the ratio M : X < 1, the electron deficiency is
4. H. Schumann, M. Magerstadt, and J. Pickardt, J. Organomet.
Chem., 1982, 240, 407.
5
6
. W.Hieber and J. Gruber, Z. Anorg. Allg. Chem., 1958, 296, 91.
. Zh. V. Dobrokhotоva, A. A. Pasynskii, A. V. Saushev, N. I.
Semenova, and Yu. V. Torubaev, Abstrs. Int. Conf. "New
Approaches in Coordination and Organometallic Chemistry.
Look from 21ꢀth Century", Nizhny Novgorod, 2002, 25.
. N. I. Semenova, Ph.D Thesis, Institute of General and Inorꢀ
ganic Chemistry, Moscow, 2002, 78 pp. (in Russian).
made up for by additional πꢀbonding
the lone electron pairs of the chalcogen atoms without the
formation of σꢀ, πꢀCO bridges. Finally, in the presence of
through
5
ꢀelectronꢀdonating methylcyclopentadienyl ligands, the
electron deficiency arising due to the elimination of carꢀ
bonyl groups may be compensated by transformation of
the rings into coordinated 6ꢀelectronꢀdonating fulvene
C H CH and formation of M—H bonds
7
8. P. Mathur, P. Sekar, C. V. V. Satyanarayana, and M. F.
Mahon, J. Chem. Soc., Dalton Trans., 1996, 2173.
5
4
2
9
. P. Mathur, D. Chakraborty, Md. M. Hossain, and R. S.
Rashid, Inorg. Chem., 1992, 31, 1106.
1
1
0. S. E. Nefedov, B. I. Kolobkov, A. A. Pasynskii, I. L.
Eremenko, and I. D. Sadekov, Zh. Neorgan. Khim., 1992,
3
7, 335 [Russ. J. Inorg. Chem., 1992, 37 (Engl. Transl.)].
1. A. A. Pasynskii, N. I. Semenova, Yu. V. Torubaev, P. V.
Belousov, K. A. Lysenko, and Zh. V. Dobrokhotova, Izv.
Akad. Nauk, Ser. Khim., 2001, 2115 [Russ. Chem. Bull., Int.
Ed., 2001, 50, 2215].
Therefore, even with M : X > 1, there is no need for
the formation of σꢀ, πꢀCO bridges until the carbonyl
groups have completely split off.
1
2. A. A. Pasynskii, N. I. Semenova, Yu. V. Torubaev, and K. A.
Lysenko, Zh. Neorgan. Khim., 2001, 46, 1987 [Russ. J. Inorg.
Chem., 2001, 46 (Engl. Transl.)].
This unusual but a rather general regularity of incomꢀ
plete elimination of CO groups in the thermolysis of tranꢀ
sition metal carbonyl chalcogenide clusters with M : X > 1
and formation of pure metal chalcogenides from clusters
with M : X < 1 can prove quite useful for controlling the
formation of oxide and carbide impurities in the inorganic
chalcogenides formed upon the pyrolysis of such clusters.
th
1
1
3. A. A. Pasynskii and Yu. V. Torubaev, Abstrs. of 34 Int. Conf.
on Coord. Chem., 2000, Edinburg, Scotland, P0815.
4. D. Fenske, H. Fleischer, H. Krautscheid, J. Magull, C. Oliver,
and S. Weisgerber, Z. Naturforsch., Teil B., 1991, 46, 1384.
15. A. A. Pasynskii, Yu. V. Torubaev, A. V. Drukovskii, I. L.
Eremenko, D. Vegini, E. V. Krasil'nikova, V. I. Privalov,
A. I. Yanovskii, and Yu. T. Struchkov, Zh. Neorgan. Khim.,
1
997, 42, 42 [Russ. J. Inorg. Chem., 1997, 42 (Engl. Transl.)].
Experimental
1
1
1
6. A. A. Pasynskii, Yu. V. Torubaev, I. L. Eremenko, D. Vegini,
S. E. Nefedov, A. I. Yanovskii, and Zh. V. Dobrokhotova,
Zh. Neorgan. Khim., 1996, 41, 2006 [Russ. J. Inorg. Chem.,
The main experimental methods used in the study were difꢀ
ferential scanning calorimetry (DSC) and thermogravimetry
TG). Measurements were carried out on a Mettler TАꢀ3000
thermal analyzer using DSCꢀ20 and TGꢀ50 modules, which
were described in previous publications.
carried out with a constant heating rate of 5 K min– in a dry
argon atmosphere. Samples were heated either in aluminum
containers (DSC) or in alundum crucibles (TG). The sample
weight did not exceed 10 mg. The variation of the weight during
heating was monitored directly with the TGꢀ50 module with an
accuracy of ±2•10–3 mg and in DSC studies of the stepwise
decomposition of the compounds over fixed temperature ranges.
The accuracy of temperature measurement at the anomalous
points in the thermograms was ±0.5°. At least four experiments
by each of the procedures was carried out for every compound.
The final results were obtained by statistical processing of the
experimental data.
1
996, 41 (Engl. Transl.)].
(
7. A. A. Pasynskii, Yu. V. Torubaev, K. A. Lysenko, A. Yu.
Lyakina, Zh. V. Dobrokhotova, and V. M. Novotortsev,
Zh. Neorgan. Khim., 1998, 43, 939 [Russ. J. Inorg. Chem.,
2
0,21
Experiments were
1
1
998, 43 (Engl. Transl.)].
8. A. A. Pasynskii, Yu. V. Skripkin, I. L. Eremenko, V. T.
Kalinnikov, G. G. Aleksandrov, V. G. Andrianov, Yu. T.
Struchkov, J. Organomet. Chem., 1979, 165, 49.
19. W. A. Herrmann, M. L. Ziegler, K. Weidenhammer, and
H. Biersack, Angew. Chem., Int. Ed. Engl., 1979, 18, 960.
0. W. Hemminger and G. Hohne, Calorimetry, Verlag Chemie,
GmbHDꢀ6940, Weinheim, 1984.
1. I. A. Kiseleva and L. P. Ogorodova, Termokhimiya mineralov
i neorganicheskikh materialov [Thermochemistry of Minerals
and Inorganic Materials], Nauchnyi mir, Moscow, 1997,
2
2
2
55 pp. (in Russian).
This work was financially supported by the Russian
Foundation for Basic Research (Projects No. 02ꢀ03ꢀ
3
3041, 02ꢀ03ꢀ06170, 02ꢀ03ꢀ06171, and MPꢀ99ꢀ2).
Received October 4, 2002