´
S. Marinkovic, N. Hoffmann
FULL PAPER
Radical Tandem Reaction of Menthyloxyfuranone 1 with N,N-Di-
methylaniline (2): After being degassed with argon, a well-stirred
suspension of the semiconductor (0.1 mol-equiv. with respect to
1) in a solution of (5R)-menthyloxyfuran-2(5H)-one (1) (500 mg,
2.1 mmol) and N,N-dimethylaniline (2) (6 mL) in acetonitrile (40
mL) was irradiated in a pyrex tube (diameter: 2 cm) at 350 nm
(Rayonet reactor) for 5 h. The reaction mixture was filtered
through Celite before evaporation of 2 and the solvent. The residue
was purified and separated by flash chromatography on silica gel
(eluent: ethyl acetate/petroleum ether).
(46), 216 (100), 139 (84). C28H46O6 (478.66): calcd. C 70.54, H 9.31;
found C 70.30, H 9.19. For further characterizations see ref.[10]
Radical Tandem Reaction of Menthyloxyfuranone 1 with N-Phenyl-
pyrrolidine (8): After being degassed with argon, a well-stirred sus-
pension of TiO2 (12 mg, 0.15 mmol, 0.1 mol-equiv. with respect to
1) in a solution of (5R)-menthyloxyfuran-2(5H)-one (1) (375 mg,
1.6 mmol) and N-phenylpyrrolidine (8) (5.5 g) in acetonitrile (30
mL) was irradiated in a pyrex tube (diameter: 2 cm) at 350 nm
(Rayonet reactor) for 8 h. The reaction mixture was filtered
through Celite before evaporation of 8 and the solvent. The residue
was purified and separated by flash chromatography on silica gel
(eluent: ethyl acetate/petroleum ether). After 8 h of irradiation the
conversion was 53%.
Tetrahydroquinoline 3a: M.p. 116 °C. [α]2D1 ϭ Ϫ206.9 (c ϭ 0.98,
1
CH2Cl2). H NMR (CDCl3): δ ϭ 0.82 (d, J ϭ 6.9 Hz, 3 H), 0.92
(d, J ϭ 7.6 Hz, 3 H), 0.94 (d, J ϭ 6.9 Hz, 3 H), 0.79Ϫ1.07 (m, 3
H), 1.21Ϫ1.47 (m, 2 H), 1.58Ϫ1.72 (m, 2 H), 2.07Ϫ2.17 (m, 2 H),
2.76Ϫ2.91 (m, 2 H), 2.85 (s, 3 H), 3.21 (m, 1 H), 3.57 (td, J ϭ 10.7,
4.2 Hz, 1 H), 3.84 (d, J ϭ 6.9 Hz, 1 H), 5.49 (d, J ϭ 1.5 Hz, 1 H),
6.68 (d, J ϭ 8.4 Hz, 1 H), 6.82 (td, J ϭ 7.2, 1.1 Hz, 1 H), 7.17 (td,
J ϭ 8.4, 1.1 Hz, 1 H), 7.46 (d, J ϭ 7.2 Hz, 1 H) ppm. 13C NMR
(CDCl3): δ ϭ 15.7, 20.8, 22.2, 23.2, 25.5, 31.3, 34.3, 39.4, 39.9,
40.4, 41.1, 47.7, 49.9, 77.2, 101.5, 112.0, 116.9, 118.4, 128.3, 130.5,
146.8, 175.5 ppm. C22H31NO3 (357.23): calcd. C 73.90, H 8.99, N
3.92; found C 73.62, H 8.99, N 3.80. For further characterizations
see ref.[10]
Benzoindolizidine Derivative 9a: M.p. 130 °C. [α]2D1 ϭ Ϫ115.2 (c ϭ
1
1.00, CH2Cl2). H NMR (CDCl3): δ ϭ 0.74 (d, J ϭ 6.9 Hz, 3 H),
0.84 (d, J ϭ 6.9 Hz, 3 H), 0.88 (d, J ϭ 7.6 Hz, 3 H), 0.70Ϫ1.00 (m,
3 H), 1.03Ϫ1.38 (m, 2 H), 1.53Ϫ1.72 (m, 4 H), 1.83Ϫ2.14 (m, 3
H), 2.22 (dsept, J ϭ 6.9, 2.7 Hz, 1 H), 2.30 (dd, J ϭ 11.0, 7.2 Hz,
1 H), 2.68 (ddd, J ϭ 11.0, 10.0, 5.7 Hz, 1 H), 3.05 (ddd, J ϭ 14.8,
9.1, 4.6 Hz, 1 H), 3.36 (dd, J ϭ 14.8, 8.8 Hz, 1 H), 3.51 (td, J ϭ
10.7, 4.2 Hz, 1 H), 3.80 (d, J ϭ 7.2 Hz, 1 H), 5.47 (s, 1 H), 6.45 (d,
J ϭ 8.0 Hz, 1 H), 6.69 (dd, J ϭ 7.6, 7.2 Hz, 1 H), 7.08 (dd, J ϭ
7.6, 7.2 Hz, 1 H), 7.39 (d, J ϭ 7.2 Hz, 1 H) ppm. 13C NMR
(CDCl3): δ ϭ 15.7, 20.9, 22.2, 22.7, 23.2, 25.7, 30.8, 31.4, 34.3,
39.7, 40.0, 45.6, 46.6, 47.7, 55.9, 77.5, 100.3, 111.7, 115.5, 117.3,
128.3, 130.7, 144.3, 176.1 ppm. C24H33NO3 (383.26): calcd. C
75.14, H 9.20, N 3.65; found C 74.99, H 8.96, N 3.56. For further
characterizations see ref.[10]
Tetrahydroquinoline 3b: [α]2D1 ϭ Ϫ52.4 (c ϭ 0.42, CH2Cl2). 1H
NMR (CDCl3): δ ϭ 0.71 (d, J ϭ 6.9 Hz, 3 H), 0.82 (d, J ϭ 7.6 Hz,
3 H), 0.89 (d, J ϭ 6.9 Hz, 3 H), 0.79Ϫ1.07 (m, 3 H), 1.18Ϫ1.39
(m, 2 H), 1.52Ϫ1.65 (m, 2 H), 2.01Ϫ2.14 (m, 2 H), 2.81Ϫ2.94 (m,
2 H), 2.83 (s, 3 H), 3.21 (dd, J ϭ 12.0, 4.7 Hz, 1 H), 3.56 (td, J ϭ
10.7, 4.2 Hz, 1 H), 3.64 (d, J ϭ 7.1 Hz, 1 H), 5.80 (d, J ϭ 4.4 Hz,
1 H), 6.61 (d, J ϭ 8.0 Hz, 1 H), 6.73 (td, J ϭ 7.4, 1.0 Hz, 1 H),
7.11 (td, J ϭ 8.5, 1.4 Hz, 1 H), 7.33 (d, J ϭ 7.2 Hz, 1 H) ppm. 13C
NMR (CDCl3): δ ϭ 15.9, 20.9, 22.2, 23.2, 25.6, 31.4, 34.3, 38.0,
39.6, 39.8, 43.1, 47.4, 47.8, 78.6, 100.2, 111.8, 116.3, 117.8, 128.5,
130.7, 146.9, 173.9 ppm. C22H31NO3 (357.23): calcd. C 73.90, H
8.99, N 3.92; found C 73.66, H 8.96, N 3.78. For further charac-
terizations see ref.[10]
Benzoindolizidine Derivative 9b: M.p. 124 °C. [α]2D1 ϭ Ϫ109.9 (c ϭ
1
1.00, CH2Cl2). H NMR (CDCl3): δ ϭ 0.74 (d, J ϭ 6.9 Hz, 3 H),
0.83 (d, J ϭ 6.9 Hz, 3 H), 0.93 (d, J ϭ 7.6 Hz, 3 H), 0.69Ϫ0.97 (m,
3 H), 1.10Ϫ1.34 (m, 2 H), 1.51Ϫ1.67 (m, 4 H), 1.81Ϫ2.09 (m, 3
H), 2.16 (dsept, J ϭ 6.9, 2.7 Hz, 1 H), 2.83Ϫ2.99 (m, 2 H), 3.18
(ddd, J ϭ 11.8, 6.9, 3.4 Hz, 1 H), 3.40Ϫ3.55 (m, 2 H), 3.89 (d, J ϭ
9.5 Hz, 1 H), 5.63 (d, J ϭ 6.5 Hz, 1 H), 6.48 (dd, J ϭ 8.4, 0.8 Hz,
1 H), 6.68 (dt, J ϭ 7.2, 0.8 Hz, 1 H), 7.07 (dt, J ϭ 8.4, 0.8 Hz, 1
H), 7.42 (dd, J ϭ 7.2, 0.8 Hz, 1 H) ppm. 13C NMR (CDCl3): δ ϭ
15.9, 21.0, 22.3, 22.7, 23.1, 25.3, 27.3, 31.4, 34.3, 40.0, 43.7, 45.6,
47.1, 48.0, 55.8, 78.2, 101.0, 112.3, 116.8, 118.0, 128.4, 129.2, 146.1,
174.4 ppm. C24H33NO3 (383.26): calcd. C 75.14, H 9.20, N 3.65;
found C 74.93, H 8.91, N 3.59. For further characterizations see
ref.[10]
Lactone 4: M.p. 58 °C. [α]2D1 ϭ Ϫ141.3 (c ϭ 0.86, CH2Cl2). 1H
NMR (CDCl3): δ ϭ 0.78 (d, J ϭ 6.9 Hz, 3 H), 0.88 (d, J ϭ 7.1 Hz,
3 H), 0.93 (d, J ϭ 6.6 Hz, 3 H), 0.65Ϫ1.07 (m, 3 H), 1.15Ϫ1.28
(m, 1 H), 1.30Ϫ1.45 (m, 1 H), 1.60Ϫ1.71 (m, 2 H), 2.03Ϫ2.15 (m,
3 H), 2.33 (m, 1 H), 2.43 (ddd, J ϭ 18.1, 9.5, 3.4 Hz, 1 H), 2.67
(td, J ϭ 17.6, 9.5 Hz, 1 H), 3.52 (td, J ϭ 10.7, 4.2 Hz, 1 H), 5.72
(dd, J ϭ 5.3, 1.9 Hz, 1 H) ppm. 13C NMR (CDCl3): δ ϭ 15.5,
20.8, 22.2, 23.0, 25.4, 27.0, 29.1, 31.3, 34.2, 39.7, 47.7, 76.5, 100.3,
176.7 ppm. C14H24O3 (240.17): calcd. C 69.95, H 10.07; found C
69.71, H 9.79. For further characterizations see ref.[10]
Acknowledgments
`
S. M. thanks the Ministere de la Recherge for a doctoral fellowship.
The reaction of 1 with deuterated aniline derivatives 2Ј and 2ЈЈ
was carried out with ZnS and TiO2 under the same conditions as
described above. The irradiation times are indicated in Table 2. For
the synthesis of 2Ј see refs.[10,28] and for the synthesis of 2ЈЈ see
refs.[10,23e,29] The position and the amount of deuterium
incorporated into 4Ј, 4ЈЈ and 5Ј was determined by 1H and 13C
NMR spectroscopy.
The work was funded by the CNRS and the Deutsche Forschungs-
gemeinschaft in the context of a French-German bilateral re-
search project.
[1] [1a]
J. Fossey, D. Lefort, J. Sorba, Free Radicals in Organic
[1b]
Chemistry, Wiley, Chichester, 1995.
Organic Synthesis: Formation of Carbon-Carbon Bonds, Perga-
mon Press, Oxford, 1986.
B. Giese, Radicals in
[1c]
1
Coupling Product 5: [α]2D1 ϭ Ϫ195.4 (c ϭ 0.84, CH2Cl2). H NMR
D. P. Curran, Comprehensive Or-
ganic Synthesis (Eds.: B. M. Trost, I. Fleming, M. F. Semmel-
hack), Pergamon Press, Oxford, 1991, vol. 4, pp. 715Ϫ777
and 779Ϫ831.
Radicals in Organic Synthesis (Eds.: P. Renaud, M. P. Sibi),
Wiley-VCH, Weinheim, 2001.
(CDCl3): δ ϭ 0.78 (d, J ϭ 7.3 Hz, 6 H), 0.88 (d, J ϭ 7.3 Hz, 6 H),
0.96 (d, J ϭ 6.5 Hz, 6 H), 0.72Ϫ1.12 (m, 6 H), 1.21Ϫ1.55 (m, 4
H), 1.62Ϫ1.84 (m, 4 H), 2.04Ϫ2.27 (m, 6 H), 2.50 (m, 2 H), 2.41
(dd, J ϭ 17.8, 8.5 Hz, 2 H), 3.52 (td, J ϭ 10.7, 4.2 Hz, 2 H), 5.53
(d, J ϭ 2.3 Hz, 2 H) ppm. 13C NMR (CDCl3): δ ϭ 15.8, 20.8, 22.3,
23.1, 25.5, 31.4, 32.1, 34.3, 39.7, 43.4, 47.8, 77.0, 102.0, 173.7 ppm.
MS (EI, 70 eV): m/z (%) ϭ 478 (54) [Mϩ], 373 (26), 335 (15), 229
[2]
[3]
D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Radical
Reactions, Wiley-VCH, Weinheim, 1996.
[4] [4a]
W. H. Urry, O. O. Juveland, J. Am. Chem. Soc. 1958, 80,
3106
2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim