A R T I C L E S
Lo et al.
Figure 1. Outline of the Williams’ synthesis of (-)-spirotryprostatin B and structures of two additional diketopiperazines from Aspergillus fumigatus.
from simple building blocks. Multicomponent coupling reactions
are illustrative;9 however, stereoselective versions are not yet
routine.10
In the original conception of this synthetic pathway, we were
attracted to several features of the Williams 3-CR. We recog-
nized the theoretical possibility of varying the stereochemistry
of cycloadducts in a partially systematic manner by exploiting
the stereospecific nature of [2 + 3]-cycloaddition reactions (cf.,
E vs Z dipolarophiles) and the influence of auxiliaries or
catalysts, although we anticipated that control over endo-exo
selectivity might be formidable. We envisioned skeletal diversity
arising by the use of alternative dipolarophiles and by the
removal of the auxiliary, yielding an amino acid that we
perceived as a substrate for subsequent skeleton-determining
reactions. Here, we report several advances that address the
initial challenges necessary to realize these theoretical advan-
tages. The results, involving a pilot split-pool synthesis16 of more
than 3000 single-skeleton spirooxindole products, should enable
more extensive stereochemical and skeletal diversification in
future studies. Numerous technical and tactical advances were
developed that are prerequisites for future studies, including a
Lewis acid mediated variant of the Williams 3-CR that proceeds
on macrobeads,17 and biological assays showing that synthetic
compounds having structural features in common with com-
pounds in Figure 1 are indeed useful as probes. These advances
enabled the synthesis of compounds that derive structural
diversification through appending processes.
We were therefore inspired by the report of Williams and
co-workers in which a stereoselective three-component reaction
(3-CR) was used as the key step in the TOS of the natural
product (-)-spirotryprostatin B.11 A spirocyclic oxindole-
pyrrolidine core was constructed with the simultaneous creation
of three bonds and four stereogenic centers in one single
chemical step. The spiro fusion between the 3-position of the
pyrrolidine ring and the 3′-position of the oxindole ring
distinguishes spirotryprostatins12 from structurally related trypros-
tatins13 and cyclotryprostatins (Figure 1).14 These tryptophan-
derived natural products were all isolated from the fermentation
broth of Aspergillus fumigatus by Osada.15
(9) For reviews, see: (a) Weber, L.; Illgen, K.; Almstetter, M. Synlett 1999,
366-374. (b) Bienayme´, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem.s
Eur. J. 2000, 6, 3321-3329. (c) Do¨mling, A.; Ugi, I. Angew. Chem., Int.
Ed. 2000, 39, 3168-3210. (d) von Wangelin, A. J.; Neumann, H.; Go¨rdes,
D.; Klaus, S.; Stru¨bing, D.; Beller, M. Chem.sEur. J. 2003, 9, 4286-
4294.
(10) Some examples include: (a) Mannich reaction: List, B.; Pojarliev, P.; Biller,
W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827-833. Notz, W.;
Tanaka, F.; Watanabe, S.; Chowdari, N. S.; Turner, J. M.; Thayumanavan,
R.; Barbas, C. F., III. J. Org. Chem. 2003, 68, 9624-9634. (b) Tandem
aza[4 + 2]-cycloaddition/allylboration: Toure´, B. B.; Hoveyda, H. R.;
Tailor, J.; Ulaczyk-Lesanko, A.; Hall, D. G. Chem.sEur. J. 2003, 9, 466-
474. (c) Addition of organoboronic acids to in situ generated imines:
Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1997, 119, 445-446. (d)
1,3-Dipolar cycloaddition: Fokas, D.; Ryan, W. J.; Casebier, D. S.; Coffen,
D. L. Tetrahedron Lett. 1998, 39, 2235-2238. (e) Passerini reaction: Frey,
R.; Galbraith, S. G.; Guelfi, S.; Lamberth, C.; Zeller, M. Synlett 2003,
1536-1538. (f) Propargylamine synthesis: Gommermann, N.; Koradin,
C.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2003, 42, 5763-
5766. (g) aza-Baylis-Hillman reaction: Balan, D.; Adolfsson, H. Tetra-
hedron Lett. 2003, 44, 2521-2524.
(11) (a) Sebahar, P. R.; Williams, R. M. J. Am. Chem. Soc. 2000, 122, 5666-
5667. (b) Sebahar, P. R.; Osada, H.; Usui, T.; Williams, R. M. Tetrahedron
2002, 58, 6311-6322.
(12) (a) Cui, C.-B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 832-835. (b)
Cui, C.-B.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52, 12651-12666.
(13) (a) Cui, C.-B.; Kakeya, H.; Okada, G.; Onose, R.; Ubukata, M.; Takahashi,
I.; Isono, K.; Osada, H. J. Antibiot. 1995, 48, 1382-1384. (b) Cui, C.-B.;
Kakeya, H.; Okada, G.; Onose, R.; Osada, H. J. Antibiot. 1996, 49, 527-
533. (c) Cui, C.-B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 534-
540.
(14) Cui, C.-B.; Kakeya, H.; Osada, H. Tetrahedron 1997, 53, 59-72.
(15) The intriguing scaffold and antimitotic activities of spirotryprostatins have
attracted the attention of synthetic chemists. For total syntheses of
spirotryprostatin B, see: (a) von Nussbaum, F.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2000, 39, 2175-2178. (b) Reference 11a. (c) Wang, H.;
Ganesan, A. J. Org. Chem. 2000, 65, 4685-4693. (d) Overman, L. E.;
Rosen, M. D. Angew. Chem., Int. Ed. 2000, 39, 4596-4599. (e) Bagul, T.
D.; Lakshmaiah, G.; Kawabata, T.; Fuji, K. Org. Lett. 2002, 4, 249-251.
(f) Meyers, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2003, 42, 694-
696.
Results and Discussion
In this initial use of the title reaction, spirooxindoles were
elaborated using building blocks having diverse properties and
orthogonal chemical reactivities. The spirooxindole skeleton is
assembled in the first step, through a highly diastereoselective
3-CR using macrobead-supported aldehydes, either enantiomer
of the Williams’ chiral auxiliary 1,18 and isatin-derived di-
polarophiles bearing the allyl ester (2 and 3).
Optimization of the 3-CR. We were unable to achieve the
3-CR on macrobeads using the conditions shown to be suc-
(16) (a) Furka, A.; Sebestye´n, F.; Asgedom, M.; Dibo´, G. Int. J. Pept. Protein
Res. 1991, 37, 487-493. (b) Lam, K. S.; Salmon, S. E.; Hersh, E. M.;
Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. Nature 1991, 354, 82-84.
(c) Houghten, R. A.; Clemencia, P.; Blondelle, S. E.; Appel, J. R.; Dooley,
C. T.; Cuervo, J. H. Nature 1991, 354, 84-86. (d) Bunin, B. A.; Ellman,
J. A. J. Am. Chem. Soc. 1992, 114, 10997-10998.
(17) Tallarico, J. A.; Depew, K. M.; Pelish, H. E.; Westwood, N. J.; Lindsley,
C. W.; Shair, M. D.; Schreiber, S. L.; Foley, M. A. J. Comb. Chem. 2001,
3, 312-318.
(18) Both enantiomers of Boc-protected Williams’ chiral auxiliary 1 are
commercially available.
9
16078 J. AM. CHEM. SOC. VOL. 126, NO. 49, 2004