ChemComm
Communication
Notes and references
1
2
3
(a) M. Zander, Polycyclische Aromaten: Kohlenwasserstoffe und Fullerene,
Teubner, Stuttgart, 1995; (b) E. Clar, Aromatische Kohlenwasserstoffe,
Polycyclische Systeme, Springer, Berlin, 2nd edn, 1952.
(a) A. C. Grimsdale and K. M u¨ llen, Angew. Chem., Int. Ed., 2005,
4
1
4, 5592; (b) J. S. Wu, W. Pisula and K. M u¨ llen, Chem. Rev., 2007,
07, 718.
(a) I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel
Dekker, New York, 2nd edn, 1993; (b) J. B. Birks, Photophysics of
Aromatic Molecules, Wiley Intersc., London, 1970; (c) E. M. S.
Castanheira and J. M. G. Martinho, Chem. Phys. Lett., 1991,
1
6
85, 319; (d) D. C. Dong and M. A. Winnik, Can. J. Chem., 1984,
2, 2560; (e) A. Okamoto, K. Kanatani and I. Saito, J. Am. Chem. Soc.,
Fig. 2 Single crystal structure of 5: (a) viewed along the b axis; (b) herringbone
2004, 126, 4820; ( f ) H. Maeda, T. Maeda, K. Mizuno, K. Fujimoto,
H. Shimizu and M. Inouye, Chem.–Eur. J., 2006, 12, 824.
packing.
4
5
(a) X.-Y. Jiang, Z.-L. Zhang, X.-Y. Zheng, Y.-Z. Wu and S.-H. Xu,
Thin Solid Films, 2001, 401, 251–254; (b) H. Benmansour,
T. Shioya, Y. Sato and G. C. Bazan, Adv. Funct. Mater., 2003, 13,
8
83.
(a) G. Horowitz, Adv. Mater., 1998, 10, 365–377; (b) C. D. Sheraw,
L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane,
I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl and
J. West, Appl. Phys. Lett., 2002, 80, 1088; (c) K. Ryu, I. Kymissis,
V. Bulovic and C. G. Sodini, IEEE Electron Device Lett., 2005, 26,
7
16.
Fig. 3 Single crystal structures of the prepared donor molecules 7 and 8,
6 I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura and
M. Glodde, Phys. Rev. B, 2003, 67, 035204.
H atoms omitted for clarity.
7
8
S. Bernhardt, M. Kastler, V. Enkelmann, M. Baumgarten and
K. Muellen, Chem.–Eur. J., 2006, 12, 6117.
(a) B. R. Kaafarani, L. A. Lucas, B. Wex and G. E. Jabbour, Tetra-
hedron Lett., 2007, 48, 5995; (b) B. Gao, M. Wang, Y. Cheng, L. Wang,
X. Jing and F. Wang, J. Am. Chem. Soc., 2008, 130, 8297;
was determined to be ca. 0.32 nm, with a very small p-overlap and
a herringbone-like geometry (Fig. 2b).
(
c) A. G. Crawford, A. D. Dwyer, Z. Liu, A. Steffen, A. Beeby,
The electron-rich compounds 6–8 were crystallized by vapor
diffusion of hexane into a DCM solution of the respective
compound, and structures 7 and 8 are juxtaposed in Fig. 3.
The packing of 7 shows an interaction between the pyrene core
of one layer and one of the tolyl-residues in the next layer. The
shortest C–C distance was found to be 0.36 nm. 8 crystallized
like 5 in a herringbone structure with the smallest inter-
molecular C–C distance determined to be 0.33 nm.
L. O. Pålsson, D. J. Tozer and T. B. Marder, J. Am. Chem. Soc.,
2011, 133, 13349.
J. Hu, D. Zhang and F. W. Harris, J. Org. Chem., 2005, 70, 707.
0 (a) S.-I. Kawano, M. Baumgarten, K. M u¨ llen, P. Murer, T. Sch ¨a fer
and M. Saleh, patent 2009-EP571262010006852, 20090610, 2010;
(b) J. A. Letizia, S. Cronin, R. P. Ortiz, A. Facchetti, M. A. Ratner
and T. J. Marks, Chem.–Eur. J., 2010, 16, 1911.
1 K. Paruch, T. J. Katz, C. Incarvito, K. C. Lam, B. Rhatigan and
A. L. Rheingold, J. Org. Chem., 2000, 65, 7602.
9
1
1
12 U. M u¨ ller and M. Baumgarten, J. Am. Chem. Soc., 1995, 117, 5840.
3 J. Lindley, Tetrahedron, 1984, 40, 1433–1456.
4 R. A. Altman, B. P. Fors and S. L. Buchwald, Nat. Protoc., 2007,
1
1
Some donor acceptor cocrystals of 8 and 9 with TCNQ
2
2
became available and served for in depth comparison of thin
2, 2881.
films and crystallites of various compositions by exciting physical 15 (a) Y. Ge, L. Miller, T. Ouimet and D. K. Smith, J. Org. Chem., 2000,
22b,c
65, 8831–8838; (b) D. M. Togashi, S. M. B. Costa and D. E. Nicodem,
J. Mol. Struct., 2001, 565, 93; (c) H. Kunkely and A. Vogler,
J. Photochem. Photobiol., A, 2002, 147, 149.
studies such as UPS, HAXPES, and NEXAFS techniques.
In conclusion, we have presented a new synthesis of pyrene
derivatives acting as donors or acceptors, starting from the 16 (a) J. B. Torrance, Acc. Chem. Res., 1979, 12, 79–86; (b) W. Kaim and
M. Moscherosch, Coord. Chem. Rev., 1994, 129, 157–193; (c) S. H u¨ nig
and P. Erk, Adv. Mater., 1991, 3, 225.
7 N. Martin, J. L. Segura and C. Seoane, J. Mater. Chem., 1997, 7,
1661.
8 Y. Yamashita, T. Suzuki, T. Mukai and G. Saito, J. Chem. Soc., Chem.
Commun., 1985, 1044.
9 (a) M. J. Ahrens, M. J. Fuller and M. R. Wasielewski, Chem. Mater.,
2003, 15, 2684; (b) B. Yoo, T. Jung, L. Wang, A. Dodabalapur,
B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, Appl.
Phys. Lett., 2006, 88, 082104.
0 (a) Z. A. Bao, A. J. Lovinger and J. Brown, J. Am. Chem. Soc., 1998,
120, 207; (b) M. H. Yoon, C. Kim, A. Facchetti and T. J. Marks, J. Am.
Chem. Soc., 2006, 128, 12851.
pyrene-4,5,9,10-tetraone and its direct halogenation in posi-
tions 2 and 7 (Br, I) which otherwise is difficult to address in
1
1
1
pyrene chemistry. They even enable their insertion in the
main chain donor and alternating donor acceptor conjugated
1
0a
copolymers. CV measurements revealed that the LUMO level
of 2,7-dicyanopyrene-4,5,9,10-tetraone 5 (ꢀ4.24 eV) is compar-
able to that of dicyano-perylene derivatives and PCBM. New
donor moieties 6–8 were developed from the pyrene core with
high lying HOMO but yet air stable. From the above outline
there are two further options to follow: (i) the combination of
these building blocks with other extended conjugated systems
2
2
1 Z. Wang, C. Kim, A. Facchetti and T. J. Marks, J. Am. Chem. Soc.,
2007, 129, 13362.
and (ii) the synthesis of even stronger donors and acceptors 22 (a) M. Medjanik, A. Gloskovskii, D. Kutnyakhov, C. Felser,
D. Chercka, M. Baumgarten, K. M u¨ llen and G. Sch ¨o nhense,
J. Electron Spectrosc. Relat. Phenom., 2012, 185, 77; (b) K. Medjanik,
et al., Phys. Rev. B, 2010, 82, 245419; (c) K. Medjanik, et al., J. Am.
based on the pyrene core.
We gratefully acknowledge support from the SFB TR49 and
the former CIBA Inc. now BASF-Switzerland.
Chem. Soc., 2012, 134, 4694.
This journal is c The Royal Society of Chemistry 2013
Chem. Commun.