6644
J. S. Yadav et al. / Tetrahedron Letters 50 (2009) 6642–6645
Table 2
Effect of various Cu(I) salts in the preparation of 3a
Entry
Cu(I) salt
Quantitya (mmol)
Yieldb (%)
1
2
3
4
5
6
7
8
9
CuI
CuI
0.2
1.2
0.2
1.2
0.2
1
1.2
2
3
10
32
8
24
15
60
65
65
65
CuBr
CuBr
CuCN
CuCN
CuCN
CuCN
CuCN
a
The reaction was carried out with phenyl azide (1 mmol), bromobenzene (1.2 mmol), and magnesium (2.5 mmol).
Yield refers to pure products after chromatography.
b
Mg
Br
MgBr
Cu
CuCN
-
+
N
N
N
°
THF, 0
C
°
THF, 0
C
Cu(I)
H
N
-
NH4Cl
-N2
N
N
N
Scheme 2.
The products were characterized by 1H NMR, IR, and mass spec-
References and notes
trometry. No improvement in yield was observed either by increas-
ing the reaction time or by increasing the amount of copper(I) salt.
In the absence of CuCN, 1,4-diaryl triazene was formed from aryl-
magnesium halide and azide, which was unstable and decomposed
rapidly to give the respective orange-red diazo compound. The
reaction was successful only with aryl cuprates. The scope and
generality of this procedure is illustrated with respect to various
organic azides and aryl halides and the results are presented in Ta-
ble 1.13
The effect of various Cu(I) salts such as CuI, CuBr and CuCN,
CuCN was studied in the reaction of phenyl azide (1 mmol), bro-
mobenzene (1.2 mmol), and magnesium (2.5 mmol). Low yields
(10–24%) were obtained when CuI and CuBr were used as addi-
tives. The use of catalytic amount of CuCN (0.2 equiv) gave the de-
sired product 3a in 15% yield. Under optimized conditions,
1.2 equiv of CuCN is essential to achieve high conversion. No in-
crease in the yield was observed even by increasing the quantity
of the CuCN (Table 2).
1. (a) Negwer, M. Organic-Chemical Drugs and their Synonyms (An International
Survey), 7th ed.; Akademie GmbH: Berlin, Germany, 1994; (b) Czarnik, A. W.
Acc. Chem. Res. 1996, 29, 112–113; (c) Hong, Y.; Senanayake, C. H.; Xiang, T.;
Vandenbossche, C. P.; Tanoury, G. J.; Bakale, R. P.; Wald, S. A. Tetrahedron Lett.
1998, 39, 3121–3124; (d) Romero, D. L.; Morge, R. A.; Genin, M. J.; Biles, C.;
Busso, M.; Resnick, L.; Althaus, I. W.; Reusser, F.; Thomas, R. C.; Tarpley, W. G. J.
Med. Chem. 1993, 36, 1505–1508; (e) Evans, D. A.; DeVries, K. M.. In
Glycopeptide Antibiotics, Drugs and the Pharmaceutical Sciences; Nagarajan, R.,
Ed.; Marcel Decker: New York, 1994; Vol. 63, pp 63–104; (f) Pettit, G. R.; Singh,
S. B.; Niven, M. L. J. Am. Chem. Soc. 1988, 110, 8539–8540; (g) Jung, M. E.;
Rohloff, J. C. J. Org. Chem. 1985, 50, 4909–4913; (h) Atkinson, D. C.; Godfrey, K.
E.; Myers, P. L.; Philips, N. C.; Stillings, M. R.; Welbourn, A. P. J. Med. Chem. 1983,
26, 1361–1364; (i) Nicolaou, K. C.; Christopher, N. C. B. J. Am. Chem. Soc. 2002,
124, 10451–10455.
2. CRC Handbook of Pesticides; Milne, G. W. A., Ed.; CRC Press: Boca Raton, FL, 1994.
3. Turner, S. R.; Strohbach, J. W.; Tommasi, R. A.; Aristoff, P. A.; Johnson, P. D.;
Skulnick, H. I.; Dolak, L. A.; Seest, E. P.; Tomich, P. K.; Bohanon, M. J.; Horng, M.
M.; Lynn, J. C.; Chong, K.-T.; Hinshaw, R. R.; Watenpaugh, K. D.; Janakiraman, M.
N.; Thaisrivongs, S. J. Med. Chem. 1998, 41, 3467–3476.
4. (a) Goodson, F. E.; Hartwig, J. F. Macromolecules 1998, 31, 1700–1703; (b)
Goodson, F. E.; Hauck, S. I.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 7527–
7530; (c) Singer, R. A.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120,
213–214.
It is noteworthy to mention that the reaction needs to be carried
out under anhydrous conditions to obtain the desired product.
Mechanistically, the reaction proceeds via the formation of aryl-
magnesium halide, from aryl halide and magnesium metal, which
subsequently reacts with CuCN to produce aryl cuprate. This aryl
cuprate may attack on azide to give the diaryl amine with concom-
itant loss of nitrogen (Scheme 2).
In conclusion, we have developed a novel approach for the syn-
thesis of unsymmetrical diaryl amines by means of addition of aryl
cuprates to aryl azides. This is a versatile method to accomplish the
synthesis of a series of diaryl amines from azides in a single-step
operation.
5. (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382–2384; (b) Goodbrand, H.
B.; Hu, N.-X. J. Org. Chem. 1999, 64, 670–674; (c) Ullmann, F. Chem. Ber. 1904,
37, 853–854.
6. (a) Lindley, J. Tetrahedron 1984, 40, 1433–1456; (b) Hassan, J.; Sevignon, M.;
Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–1370.
7. (a) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125–146; (b)
Wolfe, J. P.; Wagan, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31,
805–818; (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067; (d)
Hartwig, J. F. In Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH:
Weinheim, 2000.
8. (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001,
123, 7727–7729; (b) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3,
3803–3805; (c) Shen, R.; Porco, J. A. Org. Lett. 2000, 2, 1333–1336; (d) Kalinin,
A. V.; Bower, J. F.; Riebel, P.; Snieckus, V. J. Org. Chem. 1999, 64, 2986–2987.
9. (a) Lipshutz, B. H.; Ueda, H. Angew. Chem., Int. Ed. 2000, 39, 4492–4494; (b)
Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 247–250.
10. (a) Antilla, J. C.; Buchwald, S. L. Org. Lett. 2001, 3, 2077–2079; (b) Collman, J. P.;
Zhong, M. Org. Lett. 2000, 2, 1233–1236; (c) Lam, P. Y. S.; Vincent, G.; Clark, C.
G.; Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415–3418; (d) Lam, P.
Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He, M. Y.; DeShong, P.; Clark, C. G. J. Am.
Chem. Soc. 2000, 122, 7600–7601.
Acknowledgment
P.B. and P.J.R. thank CSIR, New Delhi, for the award of
fellowships.
11. Sapountzis, I.; Knochel, P. J. Am. Chem. Soc. 2002, 124, 9390–9391.