Journal of the American Chemical Society
Page 4 of 4
framework. Nature Chem. 2010, 2, 235. (b) Pyles, D. A.; Crowe, J. W.;
dihalophenyl)ureas. CrystEngComm 2008, 10, 1875. (c) Fischer, L.;
Guichard, G. Folding and self-assembly of aromatic and aliphatic urea
oligomers: Towards connecting structure and function. Org. Biomol. Chem.
2010, 8, 3101.
Baldwin, L. A.; McGrier, P. L. Synthesis of benzobisoxazole-linked two-
dimensional covalent organic frameworks and their carbon dioxide capture
properties. ACS Macro Lett. 2016, 5, 1055.
1
2
3
4
5
6
7
8
9
(5) (a) Li, H.; Pan, Q.; Ma, Y.; Guan, X.; Xue, M.; Fang, Q.; Yan, Y.;
Valtchev, V.; Qiu, S. Three-dimensional covalent organic frameworks with
dual linkages for bifunctional cascade catalysis. J. Am. Chem. Soc. 2016,
138, 14783. (b) Han, X.; Xia, Q.; Huang, J.; Liu, Y.; Tan, C.; Cui, Y. Chiral
covalent organic frameworks with high chemical stability for
heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2017, 139, 8693.
(6) For example: (a) Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng,
J.; Wang, J.; Qiu, S.; Yan, Y. Designed synthesis of large-pore crystalline
polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503. (b)
Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated covalent
organic frameworks via Michael addition–elimination. J. Am. Chem. Soc.
2017, 139, 2421.
(7) Examples of COFs based on flexible building units: (a) Wang, X.;
Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. Homochiral 2D porous covalent
organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem.
Soc. 2016, 138, 12332. (b) Xu, L.; Ding, S.-Y.; Liu, J.; Sun, J.; Wang, W.;
Zheng, Q.-Y. Highly crystalline covalent organic frameworks from flexible
building blocks. Chem. Commun. 2016, 52, 4706. (c) Zou, L.; Yang, X.;
Yuan, S.; Zhou, H.-C. Flexible monomer-based covalent organic
frameworks: Design, structure and functions. CrystEngComm 2017, 19,
4868.
(8) (a) Cuřínová, P.; Pojarová, M.; Budka, J.; Lang, K.; Stibor, I.;
Lhoták, P. Binding of neutral molecules by p-nitrophenylureido substituted
calix[4]arenes. Tetrahedron 2010, 66, 8047. (b) Dial, B. E.; Rasberry, R.
D.; Bullock, B. N.; Smith, M. D.; Pellechia, P. J.; Profeta, S. Jr.; Shimizu,
K. D. Guest-accelerated molecular rotor. Org. Lett. 2011, 13, 244. (c)
Matsumura, M.; Tanatani, A.; Azumaya, I.; Masu, H.; Hashizume, D.;
Kagechika, H.; Muranaka, A.; Uchiyama, M. Unusual conformational
preference of an aromatic secondary urea: Solvent-dependent open-closed
conformational switching of N,N′-bis(porphyrinyl)urea. Chem. Commun.
2013, 49, 2290. (d) Kennedy, S. R.; Miquelot, A.; Aguilar, J. A.; Steed, J.
W. Trimeric cyclamers: Solution aggregation and high Z′ crystals based on
guest structure and basicity. Chem. Commun. 2016, 52, 11846.
(9) (a) Bryantsev, V. S.; Firman, T. K.; Hay, B. P. Conformational
analysis and rotational barriers of alkyl- and phenyl-substituted urea
derivatives. J. Phys. Chem. A 2005, 109, 832. (b) Capacci-Daniel, C.;
Dehghan, S.; Wurster, V. M.; Basile, J. A.; Hiremath, R.; Sarjeant, A. A.;
Swift, J. A. Halogen/methyl exchange in a series of isostructural 1,3-bis(m-
(10) Chong, J. H.; Sauer, M.; Patrick, B. O.; MacLachlan, M. J. Highly
stable keto-enamine salicylideneanilines. Org. Lett. 2003, 5, 3823.
(11) (a) Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine,
T.; Banerjee, R. Construction of crystalline 2D covalent organic
frameworks with remarkable chemical (acid/base) stability via a combined
reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524. (b)
DeBlase, C. R.; Silberstein, K. E.; Truong, T.-T.; Abruña, H. D.; Dichtel,
W. R. β-Ketoenamine-linked covalent organic frameworks capable of
pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821.
(12) The C=O stretching bands of the ketone groups on the six-membered
rings of the model compound have been observed around 1615 cm–1 for
related compounds. They often overlap with C=C stretching bands and
appear as shoulders. See reference (11).
(13) Examples of flexible COFs: (a) Ma, Y.-X.; Li, Z.-J.; Wei, L.; Ding,
S.-Y.; Zhang, Y.-B.; Wang, W. A dynamic three-dimensional covalent
organic framework. J. Am. Chem. Soc. 2017, 139, 4995. (b) Ma, T.;
Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L.-H.; Wang,
Y.; Su, J.; Li, J.; Wang, X.; Wang, W. D.; Wang, W.; Sun, J.; Yaghi, O. M.
Single-crystal x-ray diffraction structures of covalent organic frameworks.
Science 2018, 361, 48.
(14) Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.;
Hettstedt, C.; Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K. W.;
Auras, F.; Bein, T. Molecular docking sites designed for the generation of
highly crystalline covalent organic frameworks. Nat. Chem. 2016, 8, 310.
(15) Etter, M. C.; Urbañczyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto,
T. W. Hydrogen bond-directed cocrystallization and molecular recognition
properties of diarylureas. J. Am. Chem. Soc. 1990, 112, 8415.
(16) Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin,
B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenèche, J.-M.; Le Ouay, B.;
Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi,
M.; Férey, G. Functionalization in flexible porous solids: Effects on the
pore opening and the host−guest interactions. J. Am. Chem. Soc. 2010, 132,
1127.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(17) (a) Coleman, M. M.; Sobkowiak, M.; Pehlert, G. J.; Painter, P. C.;
Iqbal, T. Infrared temperature studies of a simple polyurea. Macromol.
Chem. Phys. 1997, 198, 117. (b) Mattia, J.; Painter, P. A comparison of
hydrogen bonding and order in a polyurethane and poly(urethane−urea) and
their blends with poly(ethylene glycol). Macromolecules 2007, 40, 1546.
Insert Table of Contents artwork here
ACS Paragon Plus Environment