170
M. KELES¸ ET AL.
Silica-Aupported (CH3CH2O)3Si(CH2)3N(CH2PPh2)2 (3). [Ph2P(CH2OH)2]Cl
(0.57 g, 2 mmol) was dissolved in degassed 2:1 H2O MeOH (20 mL) solvent system, and
triethylamine (NEt3) (0.5 mL, 1.75 mmol) was added to this solution. Silica-supported
3ꢁ-aminopropyltriethoxysilane (2g) and CH2Cl2 (10 mL) were added and refluxed for 6
h. The product was purified with acetone and dried in vacuum. Yield 2.3 g (75%). FT-IR
(KBr, cm−1) 3035, 2945, 1579, 1483, 1161, 1078, 797–690. 13C NMR (25◦C): 7.5–7.7,
18.6–18.7, 23.7, 55.4, 56.5, 58.1–59.8, 60.9–60.6, 128.3–133.7. 31P NMR (CDCI3, 25◦C):
δ −27.0 [PPh2] ppm.
Solid-Supported [Ru((CH3CH2O)3Si(CH2)3N(CH2PPh2)2)Cl2] (4). Ligand 3
(2.0 g) was added to a stirred solution of [RuCl2(p-cymene)] (1.2 g, 1.96 mmol) in toluene
(5 mL). The mixture was stirred and refluxed further 12 h. The product was purified with
CH2Cl2 (10 mL) and dried in vacuum. Yield 2.24 g (75%). FT-IR (KBr, cm−1) 3053, 2919,
1664, 1436, 1120, 1098, 743–695. 31P-NMR (CDCI3, 25◦C): δ 26.2 ppm.
Typical Procedure for the Transfer Hydrogenation of Ketones
The complexes (2–4) (0.01 mmol), 2-propanol (10 mL), t-BuOK (5 mmol%), and the
substrate (1 mmol) were introduced into a Schlenk tube under argon. The resulting solution
was heated at 80◦C for 12 h. The solvent was then removed under reduced pressure and
purified by flash chromatography (hexane:ethyl acetate, 10:1). Product distribution was
determined by 1H NMR spectroscopy and GC.
REFERENCES
1. N. E. Leadbeater, J. Org. Chem., 66, 2168 (2001).
2. H. Cheng, J. Hao, H. Wang, C. Xi, X. Meng, S. Cai, and F. Zhao, J. Mol. Catal. A: Chem., 6,
278 (2007).
3. E. Lindner, A. Ja¨ger, M. Kemmler, F. Auer, P. Wegner, H. A. Mayer, A. Benez, and E. Plies,
Inorg. Chem., 36, 862 (1997).
4. E. Lindner, H. A. Mayer, I. Warad, and K. Eichele, J. Organomet. Chem., 665, 176 (2003).
5. L. T. Chai, W. W. Wang, Q. Wang, and F. G. Tao, J. Mol. Catal. A: Chem., 270, 83 (2007).
6. X. Li, W. Chen, W. Hems, F. King, and J. Xiao, Org. Lett., 24, 4559 (2003).
7. A. M. Maj, K. M. Pietrusiewicz, I. Suisse, F. Agbossou, and A. Mortreux, J. Organomet. Chem.,
626, 157 (2001).
8. R. A. W. Johnstone, A. H. Wilby, and I. D. Entwistle, Chem. Rev., 85, 129 (1985).
9. R. Noyori, M. Yamakawa, and S. Hashiguchi, J. Org. Chem., 66, 7931 (2001).
10. F. Fache, E. Schilz, M. L. Tommasino, and M. Lemaire, Chem. Rev., 100, 2159 (2000).
11. I. Ojima, Catalytic Asymmetric Synthesis, 2nd ed. (Wiley, New York, 2000).
12. Y. Nishibayasni, I. Takei, S. Uemnura, and M. Hidai, Organometallics, 18, 2291 (1999).
13. J. P. K. Reynhardt and H. Alper, J. Org. Chem., 68, 8353 (2003).
14. G. Singh, S. Bali, and A. K. Singh, Polyhedron, 26, 897 (2007).
15. T. Posset, T. F. Rominger, and J. Blumel, Chem. Mater., 17, 586 (2005).
16. P. E. Garrau, Chem. Rev., 81, 229 (1981).
17. M. Keles, Z. Aydin, and O. Serindag, J. Organomet. Chem., 692, 1951 (2007).
18. J. X. Gao, T. Ikariya, and R. Noyori, Organometallics, 15, 1087 (1996).
19. J. Gao, P. Xu, X. Yi, C. Yang, H. Zhang, S. Cheng, H. Wan, K. Tsai, and T. Ikariya, J. Mol. Catal.
A: Chem., 147, 111 (1999).
20. W. Xiong, Q. Lin, H. Ma, H. Zheng, H. Chen, and X. Li, Tetrahedron: Asymmetry, 16, 1959
(2005).