Journal of Medicinal Chemistry
Article
of the Specificity of the S1′ Binding Pockets of Leucine Amino-
peptidases. Bioorg. Med. Chem. 2007, 15, 3187−3200.
(29) Drag, M.; Grembecka, J.; Pawelczak, M.; Kafarski, P. α-
Aminoalkylphosphonates as a Tool in Experimental Optimisation of
P1 Side Chain Shape of Potential Inhibitors in S1 Pocket of Leucine-
and Neutral Aminopeptidases. Eur. J. Med. Chem. 2005, 40, 764−771.
(30) Kannan Sivaraman, K.; Paiardini, A.; Sienczyk, M.; Ruggeri, C.;
Oellig, C. A.; Dalton, J. P.; Scammells, P. J.; Drag, M.; McGowan, S.
Synthesis and Structure−Activity Relationships of Phosphonic
Arginine Mimetics as Inhibitors of the M1 and M17 Aminopeptidases
from Plasmodium falciparum. J. Med. Chem. 2013, 56, 5213−5217.
(
13) (a) Turner, A. J. Aminopeptidase N. In Handbook of Proteolytic
Enzymes, 3rd ed.; Rawlings, N. D., Salvesen, G., Eds.; Academic Press:
Amsterdam, 2013; pp 397−403. (b) Turner, A. J. PfA-M1 Amino-
peptidase (Plasmodium falciparum). In Handbook of Proteolytic
Enzymes, 3rd ed.; Rawlings, N. D., Salvesen, G., Eds.; Academic
Press: Amsterdam, 2013; pp 445−448. (c) Bhosale, M. Alanyl
Aminopeptidase (Bacterial-Type). In Handbook of Proteolytic Enzymes,
(
31) Giannousis, P. P.; Bartlett, P. A. Phosphorus Amino Acid
Analogues as Inhibitors of Leucine Aminopeptidase. J. Med. Chem.
987, 30, 1603−1609.
32) Lejczak, B.; Kafarski, P.; Zygmunt, J. Inhibition of Amino-
peptidases by Aminophosphonates. Biochemistry 1989, 28, 3549−
555.
33) Hamilton, R.; Walker, B.; Walker, B. J. A Highly Convenient
Route to Optically Pure α-Aminophosphonic Acids. Tetrahedron Lett.
995, 36, 4451−4454.
34) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. 1-Amino-
3
rd ed.; Rawlings, N. D., Salvesen, G., Eds.; Academic Press:
Amsterdam, 2013; pp 456−462.
14) (a) Strater, N.; Lipscomb, W. N. Leucyl Aminopeptidase
Animal). In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N. D.,
Salvesen, G., Eds.; Academic Press: Amsterdam, 2013; pp 1465−1470.
b) Walling, L. L. Leucyl Aminopeptidase (Plant). In Handbook of
1
(
(
(
3
(
(
Proteolytic Enzymes, 3rd ed.; Rawlings, N. D., Salvesen, G., Eds.;
Academic Press: Amsterdam, 2013; pp 1471−1476. (c) Nsangu, D. M.
M.; Mathew, R. T.; Thivierge, K.; Gardiner, D. L.; Dalton, J. P. Leucyl
Aminopeptidase of Plasmodium falciparum. In Handbook of Proteolytic
Enzymes, 3rd ed.; Rawlings, N. D., Salvesen, G., Eds.; Academic Press:
Amsterdam, 2013; pp 1481−1484.
1
(
alkylphosphonous Acids. Part 1. Isosteres of the Protein Amino Acids.
J. Chem. Soc., Perkin Trans. 1 1984, 2845−2853.
̈
(35) Lammerhofer, M.; Hebenstreit, D.; Gavioli, E.; Lindner, W.;
(
15) Matsui, M.; Fowler, J. H.; Walling, L. L. Leucine Amino-
peptidases: Diversity in Structure and Function. Biol. Chem. 2006, 387,
535−1544.
16) Grembecka, J.; Kafarski, P. Leucine Aminopeptidase as a Target
for Inhibitor Design. Mini-Rev. Med. Chem. 2001, 1, 133−144.
17) Luan, Y.; Xu, W. The Structure and Main Functions of
Aminopeptidase N. Curr. Med. Chem. 2007, 14, 639−647.
18) Mina-Osorio, P. The Moonlighting Enzyme CD13: Old and
New Functions To Target. Trends Mol. Med. 2008, 14, 361−371.
19) Bauvois, B.; Dauzonne, D. Aminopeptidase-N/CD13 (EC
.4.11.2) Inhibitors: Chemistry, Biological Evaluations, and Ther-
apeutic Prospects. Med. Res. Rev. 2006, 26, 88−130.
20) Zhang, X.; Xu, W.; Aminopeptidase, N. (APN/CD13) as a
Target for Anti-Cancer Agent Design. Curr. Med. Chem. 2008, 15,
850−2865.
21) Wickstro
Mucha, A.; Kafarski, P.; Wieczorek, P. High-Performance Liquid
Chromatographic Enantiomer Separation and Determination of
Absolute Configurations of Phosphinic acid Analogues of Dipeptides
and Their α-Aminophosphinic Acid Precursors. Tetrahedron: Asym-
metry 2003, 14, 2557−2565.
1
(
(
(36) Nocek, B.; Mulligan, R.; Bargassa, M.; Collart, F.; Joachimiak, A.
Crystal Structure of Aminopeptidase N from Human Pathogen
(
Neisseria meningitides. Proteins 2008, 70, 273−279.
(
37) Addlagatta, A.; Gay, L.; Matthews, B. W. Structure of
(
3
Aminopeptidase N from Escherichia coli Suggests a Compartmental-
ized, Gated Active Site. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 13339−
1
3344.
(
(38) Ito, K.; Nakajima, Y.; Onohara, Y.; Takeo, M.; Nakashima, K.;
Matsubara, F.; Ito, T.; Yoshimoto, T. Crystal Structure of Amino-
peptidase N (Proteobacteria Alanyl Aminopeptidase) from Escherichia
coli and Conformational Change of Methionine 260 Involved in
Substrate Recognition. J. Biol. Chem. 2006, 281, 33664−33676.
2
(
̈
m, M.; Larsson, R.; Nygren, P.; Gullbo, J. Amino-
peptidase N (CD13) as a Target for Cancer Chemotherapy. Cancer
Sci. 2011, 102, 501−508.
(
(
39) Addlagatta, A.; Gay, L.; Matthews, B. W. Structural Basis for the
Unusual Specificity of Escherichia coli Aminopeptidase N. Biochemistry
008, 47, 5303−5311.
40) Fournie-Zaluski, M. C.; Poras, H.; Roques, B. P.; Nakajima, Y.;
22) Hitzerd, S. M.; Verbrugge, S. E.; Ossenkoppele, G.; Jansen, G.;
Peters, G. J. Positioning of Aminopeptidase Inhibitors in Next
2
Generation Cancer Therapy. Amino Acids 2014, 46, 793−808.
(
́
(
23) Skinner-Adams, T. S.; Stack, C. M.; Trenholme, K. R.; Brown,
Ito, K.; Yoshimoto, T. Structure of Aminopeptidase N from Escherichia
coli Complexed with the Transition-State Analogue Aminophosphinic
Inhibitor PL250. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65,
C. L.; Grembecka, J.; Lowther, J.; Mucha, A.; Drag, M.; Kafarski, P.;
McGowan, S.; Whisstock, J. C.; Gardiner, D. L.; Dalton, J. P.
Plasmodium falciparum Neutral Aminopeptidases: New Targets for
Anti-Malarials. Trends Biochem. Sci. 2010, 35, 53−61.
8
(
14−822.
41) Gumpena, R.; Kishor, C.; Ganji, R. J.; Addlagatta, A. Discovery
(
24) Mucha, A.; Drag, M.; Dalton, J. P.; Kafarski, P. Metallo-
aminopeptidase Inhibitors. Biochimie 2010, 92, 1509−1529.
25) Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. The Most
of α,β- and α,γ-Diamino Acid Scaffolds for the Inhibition of M1 Family
Aminopeptidases. Chem. Med. Chem. 2011, 6, 1971−1976.
(
(
̈
42) Strater, N.; Lipscomb, W. N. Transition State Analogue L-
Potent Organophosphorus Inhibitors of Leucine Aminopeptidase.
Structure-Based Design, Chemistry, and Activity. J. Med. Chem. 2003,
Leucinephosphonic Acid Bound to Bovine Lens Leucine Amino-
peptidase: X-ray Structure at 1.65 Å Resolution in a New Crystal
Form. Biochemistry 1995, 34, 9200−9210.
4
(
6, 2641−2655.
26) Weglarz-Tomczak, E.; Poreba, M.; Byzia, A.; Berlicki, L.; Nocek,
(
43) Stamper, C.; Bennett, B.; Edwards, T.; Holz, R. C.; Ringe, D.;
B.; Mulligan, R.; Joachimiak, A.; Drag, M.; Mucha, A. An Integrated
Approach to the Ligand Binding Specificity of Neisseria Meningitidis
M1 Alanine Aminopeptidase by Fluorogenic Substrate Profiling,
Inhibitory Studies and Molecular Modeling. Biochimie 2013, 95, 419−
Petsko, G. Inhibition of the Aminopeptidase from Aeromonas
proteolytica by L-Leucinephosphonic Acid. Spectroscopic and Crys-
tallographic Characterization of the Transition State of Peptide
Hydrolysis. Biochemistry 2001, 40, 7035−7046.
(44) Ataie, N. J.; Hoang, Q. Q.; Zahniser, M. P.; Tu, Y.; Milne, A.;
Petsko, G. A.; Ringe, D. Zinc Coordination Geometry and Ligand
Binding Affinity: The Structural and Kinetic Analysis of the Second-
Shell Serine 228 Residue and the Methionine 180 Residue of the
Aminopeptidase from Vibrio proteolyticus. Biochemistry 2008, 47,
7673−7683.
428.
(
27) Drag, M.; Bogyo, M.; Ellman, J. A.; Salvesen, G. S.
Aminopeptidase Fingerprints. An Integrated Approach for Identi-
fication of Good Substrates and Optimal Inhibitors. J. Biol. Chem.
2
(
010, 285, 3310−3318.
28) Poreba, M.; McGowan, S.; Skinner-Adams, T. S.; Trenholme, K.
R.; Gardiner, D. L.; Whisstock, J. C.; To, J.; Salvesen, G. S.; Dalton, J.
P.; Drag, M. Fingerprinting the Substrate Specificity of M1 and M17
Aminopeptidases of Human Malaria, Plasmodium falciparum. PLoS
One 2012, 7, e31938.
(45) Skinner-Adams, T. S.; Lowther, J.; Teuscher, F.; Stack, C. M.;
Grembecka, J.; Mucha, A.; Kafarski, P.; Trenholme, K. R.; Dalton, J. P.;
Gardiner, D. L. Identification of Phosphinate Dipeptide Analog
Inhibitors Directed against the Plasmodium falciparum M17 Leucine
K
dx.doi.org/10.1021/jm501071f | J. Med. Chem. XXXX, XXX, XXX−XXX