M.M. Paz / Bioorganic Chemistry 48 (2013) 1–7
7
[15] R.M. Phillips, A.M. Burger, P.M. Loadman, C.M. Jarrett, D.J. Swaine, H.H. Fiebig,
Cancer Res. 60 (2000) 6384–6390.
[16] Y. Wang, J.P. Gray, V. Mishin, D.E. Heck, D.L. Laskin, J.D. Laskin, Mol. Cancer
Ther. 9 (2010) 1852–1863.
[17] M.M. Paz, M. Tomasz, Org. Lett. 3 (2001) 2789–2792.
[18] M. Sharma, Q.Y. He, M. Tomasz, Chem. Res. Toxicol. 7 (1994) 401–407.
[19] M. Sharma, M. Tomasz, Chem. Res. Toxicol. 7 (1994) 390–400.
[20] M.M. Paz, Chem. Res. Toxicol. 22 (2009) 1663–1668.
[21] O. Arrigoni, M.D. Tullio, Biochim. Et Biophys. Acta (BBA) – General 1569 (2002)
1–9.
[22] J. Mandl, A. Szarka, G. Bánhegyi, Br. J. Pharmacol. 157 (2009) 1097–1110.
[23] R.C. Rose, A.M. Bode, FASEB J. : Off. Publ. Federation Am. Soc. Exp. Biol. 7 (1993)
1135–1142.
methoxyquinones has been reported earlier [26]. This efficient
reduction suggests that the direct reaction of ascorbate with
MMA may play a role in the high cytotoxicity of this drug.
Our results agree with the results reported by Marshall and
Rauth in their investigation on the effects of ascorbate in the cyto-
toxicity of MMC towards CHO cells, where they found evidence
that ascorbate was not acting by directly reducing MMC [30]. They
proposed that the increased toxicity of MMC in the presence of
ascorbate that they observed might be due to an increased produc-
tion of bioreductive enzymes or of compounds capable of modulat-
ing the reduction process. An additional mechanism by which
ascorbate may potentiate the effects of MMC is by inhibiting mul-
tidrug resistance glycoprotein (MDR1) [62].
[24] S.S. Mirvish, L. Wallcave, M. Eagen, P. Shubik, Science 177 (1972) 65–68.
[25] V.A. Roginsky, T.K. Barsukova, H.B. Stegmann, Chem. – Biol. Interact. 121
(1999) 177–197.
[26] R. Pethig, P.R. Gascoyne, J.A. McLaughlin, A. Szent-Györgyi, Proc. Natl. Acad. Sci.
USA 80 (1983) 129–132.
[27] N.S. Isaacs, R. van Eldik, J. Chem. Soc. Perkin Trans. 2 (1997) 1465–1468.
[28] J. Verrax, R. Beck, N. Dejeans, C. Glorieux, B. Sid, R.C. Pedrosa, et al., Anti-Cancer
Agents Med. Chem. 11 (2011) 213–221.
5. Conclusions
[29] A.P. Krishnaja, N.K. Sharma, Teratogen. Carcin. Mut. Suppl. 1 (2003) 99–112.
[30] R.S. Marshall, A.M. Rauth, Cancer Res. 46 (1986) 2709–2713.
[31] G. Krishna, J. Nath, T. Ong, Cancer Res. 46 (1986) 2670–2674.
[32] G. Rivas-Olmedo, S.D. Barriga-Arceo, E. Madrigal-Bujaidar, J. Toxicol. Environ.
Health Part A 35 (1992) 107–113.
[33] K. Nakano, S. Fujimoto, H. Tokita, In Vivo 2 (1988) 247–252.
[34] K. Vijayalaxmi, R. Venu, Mutat. Res. – Genet. Toxicol. 438 (1999) 47–51.
[35] C. Kammerer, N. Getoff, In Vivo 18 (2010) 795–798.
[36] L. Fuga, M. Kragl, N. Getoff, Anticancer Res. 24 (2010) 4031–4034.
[37] B. Svoboda, N. Getoff, Anticancer Res. 22 (2010) 949–952.
[38] C. Kammerer, I. Czermak, N. Getoff, R. Kodym, Anticancer Res. 19 (2010) 5319–
5321.
In summary, our results indicate that the modulatory activity
on the effects of MMC by AscH is unlikely to be the result of a direct
redox reaction between MMC and ascorbate and, therefore, alter-
native biochemical mechanisms must be responsible for this mod-
ulation. In contrast, a reductive activation by ascorbate may
contribute to the potent cytotoxic activity of MMA.
Acknowledgment
[39] E. Heinrich, N. Getoff, Z. Naturforsch., C: J. Biosci. 58 (2003) 244–248.
[40] D.M. Vyas, D. Benigni, R.A. Partyka, T.W. Doyle, J. Org. Chem. 51 (1986) 4307–
4309.
We are grateful to Kyowa Hakko Kogyo Co. Ltd. for a gift of
mitomycin C.
[41] W.G. Taylor, W.A. Remers, J. Med. Chem. 18 (1975) 307–311.
[42] E. Champeil, M.M. Paz, S. Ladwa, C.C. Clement, A. Zatorski, M. Tomasz, J. Am.
Chem. Soc. 130 (2008) 9556–9565.
Appendix A. Supplementary material
[43] J.S. Webb, D.B. Cosulich, J.H. Mowat, J.B. Patrick, R.W. Broschard, W.E. Meyer,
et al., J. Am. Chem. Soc. 84 (1962) 3185–3187.
Supplementary data associated with this article can be found, in
[44] D.M. Peterson, J. Fisher, Biochemistry 25 (1986) 4077–4084.
[45] R.A. McClelland, K. Lam, J. Am. Chem. Soc. 107 (1985) 5182–5186.
[46] M. Tomasz, R. Lipman, Biochemistry 20 (1981) 5056–5061.
[47] M.M. Paz, Bioorg. Med. Chem. Lett. 20 (2010) 31–34.
[48] K.G.A. Jackson, J.K.N. Jones, Can. J. Chem. 43 (1965) 450–457.
[49] G. Fodor, Tetrahedron 39 (1983) 2137–2145.
References
[50] U. Beifuss, Tetrahedron 56 (2000) 357–361.
[1] M.M. Paz, Antitumour antibiotics, in: S. Missailidis (Ed.), Anticancer
Therapeutics, John Wiley and Sons, Chichester, UK, 2008, pp. 112–115.
[2] R. Shah, S. Wilson, Curr. Opin. Ophthal. 21 (2010) 269–273.
[3] D. Warner, S.E. Brietzke, Otolaryng. Head Neck. 138 (2008) 700–709.
[4] S.S. Pan, H. Gonzalez, Mol. Pharmacol. 37 (1990) 966–970.
[5] M.M. Paz, A. Das, Y. Palom, Q.Y. He, M. Tomasz, J. Med. Chem. 44 (2001) 2834–
2842.
[6] B.M. Hoey, J. Butler, A.J. Swallow, Biochemistry 27 (1988) 2608–2614.
[7] M. Tomasz, Y. Palom, Pharmacol. Ther. 76 (1997) 73–87.
[8] M. Tomasz, Chem. Biol. 2 (1995) 575–579.
[9] Y. Palom, G. Suresh Kumar, L.-Q. Tang, M.M. Paz, S.M. Musser, S. Rockwell,
et al., Chem. Res. Toxicol. 15 (2002) 1398–1406.
[10] S. Napetschnig, H. Sies, Biochem. Pharmacol. 36 (1987) 1617–1621.
[11] T. Komiyama, T. Kikuchi, Y. Sugiura, Biochem. Pharmacol. 31 (1982) 3651–
3656.
[51] A.J. Pow, R.K. Belter, J. Org. Chem. 53 (1988) 1535–1540.
[52] P.W. Lu, D.W. Lillard, P.A. Seib, K.J. Kramer, Y.T. Liang, J. Agric. Food Chem. 32
(1984) 21–28.
[53] G. Suresh Kumar, R. Lipman, J. Cummings, M. Tomasz, Biochemistry 36 (1997)
14128–14136.
[54] L. Chirrey, J. Cummings, G.W. Halbert, J.F. Smyth, Cancer Chemoth. Pharm. 35
(1995) 318–322.
[55] G. Subramaniam, M.M. Paz, G. Suresh Kumar, A. Das, Y. Palom, C.C. Clement,
et al., Biochemistry 40 (2001) 10473–10484.
[56] P. Schiltz, H. Kohn, J. Am. Chem. Soc. 115 (1993) 10497–10509.
[57] Y.P. Hong, H. Kohn, J. Am. Chem. Soc. 113 (1991) 4634–4644.
[58] M.M. Paz, Chem. Res. Toxicol. 23 (2010) 1384–1392.
[59] K. Mukai, M. Nishimura, S. Kikuchi, J. Biol. Chem. 266 (1991) 274–278.
[60] C.D. Utzat, C.C. Clement, L.A. Ramos, A. Das, M. Tomasz, A.K. Basu, Chem. Res.
Toxicol. 18 (2005) 213–223.
[61] P. Bergsten, G. Amitai, J. Kehrl, K.R. Dhariwal, H.G. Klein, M. Levine, J. Biol.
Chem. 265 (1990) 2584–2587.
[62] E.M. El-Masry, M.B. Abou-Donia, Life Sci. 73 (2003) 981–991.
[63] R.C. Kerber, J. Chem. Educ. 85 (2008) 1237–1242.
[12] R.G. Snodgrass, A.C. Collier, A.E. Coon, C.A. Pritsos, J. Biol. Chem. 285 (2010)
19068–19075.
[13] M.M. Paz, X. Zhang, J. Lu, A. Holmgren, Chem. Res. Toxicol. 25 (2012) 1502–
1511.
[14] J. Cummings, V.J. Spanswick, M. Tomasz, J.F. Smyth, Biochem. Pharmacol. 56
(1998) 405–414.