RSC Advances
Paper
20 A. Bandyopadhyay and S. Raghavan, Dening the role of
integrin alpha(v)beta(6) in cancer, Curr. Drug Targets, 2009,
10(7), 645–652.
SFB) with RGD peptide using a GE FASTlab synthesizer,
Mol. Imaging Biol., 2011, 13(6), 1088–1095.
37 U. Ackermann, et al. Fully automated synthesis and coupling
of [18F]FBEM to glutathione using the iPHASE FlexLab
module, J. Labelled Compd. Radiopharm., 2014, 57(2), 115–
120.
21 B. J. Hackel, et al. 18F-Fluorobenzoate-labeled cystine knot
peptides for PET imaging of integrin alpha(v)beta(6), J.
Nucl. Med., 2013, 54(7), 1101–1105.
22 S. Li, et al. Synthesis and characterization of a high-affinity 38 D. E. Olberg, et al. One step radiosynthesis of 6-[18F]
alpha(v)beta(6)-specic ligand for in vitro and in vivo
applications, Mol. Cancer Ther., 2009, 8(5), 1239–1249.
23 M. K. J. Gagnon, et al. High-throughput in vivo screening of
targeted molecular imaging agents, Proc. Natl. Acad. Sci. U. S.
A., 2009, 106(42), 17904–17909.
24 S. H. Hausner, et al. Targeted in vivo imaging of integrin avb6
with an improved radiotracer and its relevance in
a pancreatic tumor model, Cancer Res., 2009, 69(14), 5843–
5850.
uoronicotinic acid 2,3,5,6-tetrauorophenyl ester ([18F]F-
Py-TFP): A new prosthetic group for efficient labeling of
biomolecules with uorine-18, J. Med. Chem., 2010, 53(4),
1732–1740.
39 R. A. Davis and J. C. Fettinger, Crystal structure of N,N,N-
trimethyl-5-((2,3,5,6-tetrauorophenoxy)carbonyl)pyridin-2-
aminium triuoromethanesulfonate a precursor for the
synthesis
of
6-[18F]-Fluoronicotinyl-2,3,5,6-tetrauoro
phenylester, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun., 2018, 74(5), C74.
25 S. H. Hausner, et al. The effect of bi-terminal PEGylation of
an integrin avb6–targeted 18F peptide on pharmacokinetics 40 R. B. Merrield, Solid phase peptide synthesis. I. The
and tumor uptake, J. Nucl. Med., 2015, 56(5), 784–790.
synthesis of a tetrapeptide, J. Am. Chem. Soc., 1963, 85(14),
2149–2154.
26 S. H. Hausner, et al. Preclinical development and rst-in
human imaging of integrin avb6 with [18F] avb6-binding 41 P. R. Hansen and A. Oddo, Fmoc Solid-phase peptide
peptide in metastatic carcinoma, Clin. Cancer Res., 2019,
25(4), 1206–1215.
synthesis, in Peptide antibodies: Methods and protocols, ed.
G. Houen, Springer, New York, NY, 2015, pp. 33–50.
27 A. A. Begum, P. M. Moyle and I. Toth, Investigation of 42 R. A. Davis, et al., Solid-phase synthesis and uorine-18
bombesin peptide as a targeting ligand for the gastrin
releasing peptide (GRP) receptor, Bioorg. Med. Chem., 2016,
24(22), 5834–5841.
radiolabeling of cycloRGDyK, Org. Biomol. Chem., 2016,
14(37), 8659–8663.
43 M. Lazari, et al. Understanding temperatures and pressures
during short radiochemical reactions, Appl. Radiat. Isot.,
2016, 108, 82–91.
44 N. Malik, et al. Radiosynthesis of a new PSMA targeting
ligand ([18F]FPy-DUPA-Pep), Appl. Radiat. Isot., 2011, 69(7),
1014–1018.
28 Y. Zilin, et al. An update of radiolabeled bombesin analogs
for gastrin-releasing peptide receptor targeting, Curr.
Pharm. Des., 2013, 19(18), 3329–3341.
29 S. Okarvi, Recent progress in uorine-18 labelled peptide
radiopharmaceuticals, Eur. J. Nucl. Med., 2001, 28(7), 929–
938.
45 F. Basuli, et al. Facile room temperature synthesis of
30 O. Jacobson, D. O. Kiesewetter and X. Chen, Fluorine-18
radiochemistry, labeling strategies and synthetic routes,
Bioconjugate Chem., 2015, 26(1), 1–18.
uorine-18
labeled
uoronicotinic
acid-2,3,5,6-
tetrauorophenyl ester without azeotropic drying of
uorine-18, Nucl. Med. Biol., 2016, 43(12), 770–772.
31 D. E. Olberg and O. K. Hjelstuen, Labeling strategies of 46 F. Basuli, et al. Fast indirect uorine-18 labeling of protein/
peptides with 18F for positron emission tomography, Curr.
Top. Med. Chem., 2010, 10(16), 1669–1679.
32 J. Collins, et al. Production of diverse PET probes with
limited resources: 24 18F-labeled compounds prepared
peptide using the useful 6-uoronicotinic acid-2,3,5,6-
tetrauorophenyl prosthetic group: A method comparable
to direct uorination, J. Labelled Compd. Radiopharm.,
2017, 60(3), 168–175.
with a single radiosynthesizer, Proc. Natl. Acad. Sci. U. S. A., 47 D. O. Kiesewetter, O. Jacobson, L. Lang and X. Chen,
2017, 114(43), 11309–11314.
Automated radiochemical synthesis of [18F]FBEM: A thiol
reactive synthon for radiouorination of peptides and
proteins, Appl. Radiat. Isot., 2011, 69, 410–414.
33 C. Collet, et al. Development of 6-[18F]uoro-carbohydrate-
based prosthetic groups and their conjugation to peptides
via click chemistry, J. Labelled Compd. Radiopharm., 2016, 48 G. Tang, X. Tang and X. Wang, A facile automated synthesis
59(2), 54–62.
of N-succinimidyl 4-[18F]uorobenzoate ([18F]SFB) for 18F-
labeled cell-penetrating peptide as PET tracer, J. Labelled
Compd. Radiopharm., 2010, 53, 543–547.
34 O. Jacobson, et al. Novel method for radiolabeling and
dimerizing
thiolated
peptides
using
18F-
hexauorobenzene, Bioconjugate Chem., 2015, 26(10), 2016– 49 R. C. Cumming, D. E. Olberg and J. L. Sutcliffe, Rapid 18F-
2020.
radiolabeling of peptides from [18F]uoride using a single
microuidics device, RSC Adv., 2014, 4(90), 49529–49534.
35 U. Ackermann, et al. Improved synthesis of [18F]FLETT via
a fully automated vacuum distillation method for [18F]2- 50 M. Glaser, et al. Radiosynthesis and biodistribution of cyclic
uoroethyl azide purication, Appl. Radiat. Isot., 2014, 94,
72–76.
RGD peptides conjugated with a novel [18F]uorinated
aldehyde-containing prosthetic group, Bioconjugate Chem.,
2008, 19(4), 951–957.
36 D. Thonon, et al. Fully automated preparation and
conjugation of N-succinimidyl 4-[18F]uorobenzoate ([18F]
8648 | RSC Adv., 2019, 9, 8638–8649
This journal is © The Royal Society of Chemistry 2019