Unusual Zero-Order Kinetic BehaVior and Product Inhibition
J. Am. Chem. Soc., Vol. 122, No. 19, 2000 4619
oxidative addition of the aryl halide or sulfonate to a Pd(0)
complex that is typically ligated by phosphine ligands.49-53 The
resulting arylpalladium halide displays a diverse set of reactions
that form organylpalladium hydrocarbyl, amido, and alkoxo
complexes by transmetalation or form alkylpalladium halide
complexes by olefin insertion.53 In most cases, the “resting state”
of the catalystsin other words, the species that is the major or
exclusive palladium complex in solutionsis a Pd(0) phosphine
complex or an arylpalladium halide complex. Thus, the rate of
oxidative addition often dictates the overall rate of the catalytic
reaction, and the rate of decomposition of an arylpalladium
halide complex can dictate turnover numbers and catalyst
stability.
studies have addressed the oxidative addition of aryl halides to
palladium complexes supported by chelating phosphines.51,55,56
In particular, only one study presents the oxidative addition of
aryl halides to Pd(0) ligated by chelating phosphines, such as
[1,1′-bis(diphenylphosphino)ferrocene (DPPF) and 2,2′-bis-
(diphenylphosphino)-1,1′-binaphthyl (BINAP), which are par-
ticularly useful ligands for the catalytic amination of aryl
halides.51 The published work involves the oxidative addition
of aryl halides to palladium complexes supported by ligands
that are generated in situ and that are ligated by both alkenes,
such as methyl acrylate or trans,trans-dibenzylideneacetone
(DBA), and either DPPF or BINAP. While these data are useful
for cases in which the catalyst is generated from Pd2(DBA)3 or
Pd(DBA)2 as a zerovalent palladium source, they are less
informative when Pd(OAc)2 or other species are used to generate
the active catalyst. Moreover, we have observed that DBA can
be consumed in the catalytic reaction, generating homoleptic
phosphine palladium complexes as the resting state even when
Pdn(DBA)m is used as the catalyst precursor.
Many studies on the oxidative addition of aryl halides to
zerovalent palladium complexes of triphenylphosphine and other
monophosphines have been published.49,50,52,54 However, few
(22) Ashimori, A.; Bachand, B.; Calter, M. A.; Govek, S. P.; Overman,
L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6488-6499.
(23) Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am.
Chem. Soc. 1998, 120, 6477-6487.
(24) Kondo, K.; Sodeoka, M.; Mori, M.; Shibasaki, M. Tetrahedron Lett.
1993, 34, 4219-4222.
(25) Oshima, T.; Kegechika, K.; Adachi, M.; Sodeoka, M.; Shibasaki,
M. J. Am. Chem. Soc. 1996, 118, 7108-7116.
(26) Kurihara, Y.; Sodeoka, M.; Shibasaki, M. Chem. Pharm. Bull. 1994,
42, 2357-2359.
(27) Sato, Y.; Sodeoka, M.; Shibasaki, M. Chem. Lett. 1990, 1953-
1954.
Since the palladium-catalyzed amination of aryl halides with
tin amides was reported by Kosugi and Migita, aryl halide
amination has become a general, synthetically valuable route
to arylamines.47,57-72 Work in the authors’ laboratory and in
Buchwald’s laboratory has allowed for the use of amines and
base instead of tin amides and has led to improvements in
selectivity, scope of suitable substrates, and catalyst stability.
The complexes formed from a palladium precursor and the
chelating phosphines DPPF or BINAP (Scheme 1) are more
effective catalysts for the arylation of primary amines than the
original catalysts bearing P(o-tolyl)3 as ligand.47,48
(28) Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738-
4739.
(29) Takemoto, T.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Am. Chem.
Soc. 1993, 115, 8477-8478.
(30) Tietze, L. F.; Raschke, T. Synlett 1995, 597-598.
(31) Bumagin, N. A.; Andryukhova, N. P.; Beletskaya, I. P. Dokl. Akad.
Nauk SSSR 1987, 297, 1126-1129.
Some of the stoichiometric reactions involved in the arylation
of amines using these chelating ligands have been studied, but
the initial oxidative addition step involving these catalysts has
not been investigated. Moreover, the kinetic behavior of the
overall catalytic system is unknown. The catalytic cycle is
certainly initiated by the oxidative addition of an aryl bromide
to a Pd(0) complex to form a cis arylpalladium bromide complex
that is ligated by either DPPF or BINAP. This aryl bromide
(32) Bumagin, N. A.; Angryukhova, N. P.; Beletskaya, I. P. Metalloorg.
Khim. 1989, 2, 893-897.
(33) Bumagin, N. A.; Sikolova, A. F.; Beletskaya, I. P. IzV. Akad. Nauk,
Ser. Khim. 1993, 2009-2010.
(34) Bumagin, N. A.; Safarov, F. S.; Beletskaya, I. P. Dokl. Akad. Nauk
1993, 332, 48-49.
(35) Bumagin, N. A.; Luzikova, E. V.; Beletskaya, I. P. Zh. Org. Khim.
1995, 31, 1663-1666.
(36) Bumagin, N. A.; Sokolova, A. A.; Beletskaya, I. P.; Wolz, G. Zh.
Org. Khim. 1993, 29, 162-164.
(37) Flandanese, V.; Miccoli, G.; Naso, F.; Ronzini, L. J. Organomet.
Chem. 1986, 312, 343-348.
(55) Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665-1673.
(56) Jutand, A.; Hii, K. K. M.; Thornton-Pett, M.; Brown, J. M.
Organometallics 1999, 18, 5367-5374.
(38) Hayashi, T.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979, 21,
1871-1874.
(57) Kosugi, M.; Kameyama, M.; Sano, H.; Migita, T. Nippon Kagaku
Kaishi 1985, 3, 547-551.
(39) Katayama, T.; Umeno, M. Chem. Lett. 1991, 2073-2076.
(40) Kranenburg, M.; Kamer, P. C. J.; Van Leeuween, P. W. N. M. Eur.
J. Inorg. Chem. 1998, 155-157.
(58) Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 927-
928.
(41) Rehm, J. D. D.; Ziemer, B.; Sziemies, G. Eur. J. Org. Chem. 1999,
2079-2085.
(59) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125-
146.
(60) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805-818.
(61) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2047-2067.
(62) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852-860.
(63) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 7369-
7370.
(42) Rozenberg, V. I.; Sergeeva, E. V.; Kharitonov, V. G.; Vorontsova,
N. V.; Vorontsova, E. V.; Mikul’shina, V. V. IzV. Akad. Nauk, Ser. Khim.
1994, 1081-1085.
(43) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382.
(44) Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. J. Org. Chem.
1998, 63, 6546.
(45) Ahman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald,
S. L. J. Am. Chem. Soc. 1998, 120, 1918-1919.
(46) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108-
11109.
(64) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.;
Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575-5580.
(65) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
120, 9722-9723.
(66) Bei, X.; Uno, T.; Norris, J.; Turner, H. W.; Weinberg, W. H.; Guram,
A. S.; Petersen, J. L. Organometallics 1999, 18, 1840-1853.
(67) Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen,
J. L. J. Org. Chem. 1999, 64, 6797-6803.
(68) Bei, X. H.; Uno, T.; Norris, J.; Turner, H. W.; Weinber, W. H.;
Guram, A. S.; Petersen, J. L. Organometallics 1999, 18, 1840-1853.
(69) Bei, X. H.; Creiver, T.; Guram, A. S.; Jandeleit, B.; Powers, T. S.;
Turner, H. W.; Uno, T.; Weinberg, W. H. Tetrahedron Lett. 1999, 40, 3855-
3858.
(47) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217.
(48) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996,
118, 7215-7216.
(49) Amatore, C.; Pflu¨ger, F. Organometallics 1990, 9, 2276-2282.
(50) Amatore, C.; Jutand, A.; M’Barki, M. A. Organometallics 1992,
11, 3009-3013.
(51) Amatore, C.; Broeker, G.; Jutand, A.; Khalil, F. J. Am. Chem. Soc.
1997, 119, 5176-5185.
(52) Amatore, C.; Jutand, A.; Suarez, A. J. Am. Chem. Soc. 1993, 115,
9351-9541.
(70) Bei, X. H.; Guram, A. S.; Turner, H. W.; Weinberg, W. H.
Tetrahedron Lett. 1999, 40, 1237-1240.
(71) Reddy, N. P.; Tanaka, M. Tetrahedron Lett. 1997, 38, 4807-4810.
(72) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 36,
7026-7033.
(53) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles
and Applications of Organotransition Metal Chemistry, 2nd ed.; Wiley-
Interscience: New York, 1987; p 322-333.
(54) Hartwig, J. F.; Paul, F. J. Am. Chem. Soc. 1995, 117, 5373-5374.