Communication
ChemComm
the most anodically shifted redox process, although being well-
separated from the cationic carbene entity.
2 (a) R. Br u¨ ckner, Reaktionsmechanismen, Spektrum Akademischer
Verlag, M u¨ nchen, 3rd edn, 2004, pp. S.592–S.602; (b) M. Korb and
H. Lang, Chem. Soc. Rev., 2019, 48, 2829.
As expected, the diferrocenyl functionalized complexes
3
(a) N. Weliky and E. S. Gould, J. Am. Chem. Soc., 1957, 79, 2742–2746;
(b) S. I. Goldberg and W. D. Bailey, J. Chem. Soc. D, 1969, 1059–1060;
(c) M. D. Rausch and C. A. Pryde, J. Organomet. Chem., 1971, 26,
+
[
6a,b] showed an additional redox process at higher potential.
+
In gem-diferrocenyl vinylidene [6a] these two processes are
1
41–146; M. J. McGlinchey, Inorganics, 2020, 8, 68; (d) P. Denifl,
A. Hradsky, B. Bildstein and K. Wurst, J. Organomet. Chem., 1996,
23, 79–91.
T. D. Turbitt and W. E. Watts, J. Chem. Soc., Chem. Commun., 1972,
47.
M. Liu, J. Wang, X. Yuan, R. Jiang and N. Fu, Synth. Commun., 2017,
7, 2369–2377.
ꢂ 0
F
separated by DE1 ¼ 445 mV in the [NBu
featuring a bulky and weakly-coordinating anion. Measurement
4 4
][BAr ] electrolyte
;2
5
4
5
6
of the voltammetry in a 0.1 M [NBu
4
][PF
6
] electrolyte solution
9
ꢂ 0
reduces the redox separation to DE1 ¼ 150 mV, due to a better
;2
4
ion-pairing in solution and consequent shielding of the developing
J. T. Yli-Kauhaluoma, J. A. Ashley, C.-H. Lo, L. Tucker, M. M. Wolfe
ꢀ
positive charge by the [PF
6
]
counter ion. The change in the
and K. D. Janda, J. Am. Chem. Soc., 1995, 117, 7041–7047.
ꢂ 0
7 Y. Ikeda, T. Yamaguchi, K. Kanao, K. Kimura, S. Kamimura,
Y. Mutoh, Y. Tanabe and Y. Ishii, J. Am. Chem. Soc., 2008, 130(50),
16856–16857.
separation of these two redox processes, DDE1;2 ¼ 295 mV, can
thus be ascribed to a compensation of electrostatic repulsion. The
8
Y. Mutoh, Y. Ikeda, Y. Kimura and Y. Ishii, Chem. Lett., 2009, 38,
34–535.
redox separation of 150 mV is similar to gem-diferrocenyl alkenes
5
2
1
22
23
bearing H and alkyl groups, as well as tetraferrocenyl allene.
Although the magnitude of DE is a result of the sum of a number of
9
Y. Mutoh, K. Imai, Y. Kimura, Y. Ikeda and Y. Ishii, Organometallics,
2011, 30, 204–207.
24
+
10 (a) M. Otsuka, N. Tsuchida, Y. Ikeda, N. Lambert, R. Nakamura,
Y. Mutoh, Y. Ishii and K. Takano, Organometallics, 2015, 34,
factors, the residual redox separation of 150 mV in [6a] in
NBu ][PF ] electrolyte is also likely dominated by electrostatic
interactions rather than electronic communication, as shown
[
4
6
3934–3943; (b) M. Otsuka, N. Tsuchida, Y. Ikeda, Y. Kimura,
Y. Mutoh, Y. Ishii and K. Takano, J. Am. Chem. Soc., 2012, 134,
17746–17756.
1 J. B. G. Gluyas, N. J. Brown, J. D. Farmer and P. J. Low,
25
recently in a study of cross-conjugated diferrocenyl imines.
1
ꢂ 0
+
Insertion of a phenylethynyl spacer ([6b] ) further reduced DE
Austr. J. Chem., 2017, 70, 113.
1;2
F
12 M. Korb, S. M. B. Hosseini-Ghazvini, S. A. Moggach, J.-F. Meunier,
A. Bousseksou and P. J. Low, Inorg. Chem., 2021, DOI: 10.1021/
acs.inorgchem.1c00042.
to 114 mV even if measured in [NBu ][BAr ].
4
4
+
+
In summary reaction of [Ru(dppe)Cp] ([1] ) and FcCRCFc
(
5a) resulted in an internal alkyne/vinylidene rearrangement 13 O. J. S. Pickup, I. Khazal, E. J. Smith, A. C. Whitwood, J. M. Lynam,
+
+
K. Bolaky, T. C. King, B. W. Rawe and N. Fey, Organometallics, 2014,
3, 1751–1761.
2
affording complex [Ru{QCQCFc }(dppe)Cp] ([6a] ) clearly
demonstrating that ferrocenyl groups are able to migrate along
a carbon–carbon bond in a 1,2-fashion similar to methyl
3
1
4 (a) G. Grelaud, N. Gauthier, Y. Luo, F. Paul, B. Fabre, F. Barri `e re,
S. Ababou-Girard, T. Roisnel and M. G. Humphrey, J. Phys. Chem. C,
2
014, 118, 3680–3695; (b) M. Bassetti, V. Cadierno, J. Gimeno and
(Wagner–Meerwein) and phenyl group rearrangements. Sub-
C. Pasquini, Organometallics, 2008, 27, 5009–5016; (c) H. Katayama,
C. Wada, K. Taniguchi and F. Ozawa, Organometallics, 2002, 21,
3285–3291; (d) S. Pavlik, R. Schmid, K. Kirchner and K. Mereiter,
Chem. Monthly, 2004, 135, 1349–1357; (e) V. Cadierno, M. P. Gamasa
and J. Gimeno, Organometallics, 1999, 18, 2821–2832;
strates bearing two alkynyl functionalities and multiple ferro-
cenyl fragments underwent two subsequent rearrangements
forming bimetallic bis(vinylidene) complexes. Electrochemical
investigations of the vinylidene complexes revealed a redox
separation of up to 445 mV for a QCQCFc substitution
2
pattern caused by electrostatic interactions.
(
f ) H. Katayama and F. Ozawa, Organometallics, 1998, 17,
5190–5196; (g) M. Sato and M. Sekino, J. Organomet. Chem., 1993,
44, 185–190.
4
1
5 M. I. Bruce, P. A. Humphrey, M. Jevric, G. J. Perkins, B. W. Skelton
and A. H. White, J. Organomet. Chem., 2007, 692, 1748–1756.
M. K. gratefully acknowledges support from the Forrest
Research Foundation for a Forrest Research Fellowship. The 16 L.-S. Hsu and Y.-H. Lo, J. Organomet. Chem., 2016, 812, 177–182.
1
7 L.-H. Chang, C.-W. Yeh, H.-W. Ma, S.-Y. Liu, Y.-C. Lin, Y. Wang and
Y.-H. Liu, Organometallics, 2010, 29, 1092–1099.
8 D. P. Harrison, V. J. Kumar, J. N. Noppers, J. B. G. Gluyas,
A. N. Sobolev, S. A. Moggach and P. J. Low, New J. Chem., 2021,
DOI: 10.1039/d0nj03093g.
9 G. Consigllo, F. Morandini, G. F. Ciani and A. Sironi, Organometal-
lics, 1986, 5, 1976–1983; D. Duracynska and J. H. Nelson, Dalton
Trans., 2003, 449–457.
0 (a) M. R. Hall, R. R. Steen, M. Korb, A. N. Sobolev, S. A. Moggach,
J. M. Lynam and P. J. Low, Chem. – Eur. J., 2020, 26, 7226–7234;
authors gratefully acknowledge the facilities, and the scientific
and technical assistance of Microscopy Australian at the Centre
for Microscopy, Characterisation & Analysis (CMCA) and The
University of Western Australia, a facility funded by the Uni-
versity, State and Commonwealth Governments. S. A. M. thanks
the Australian Research Council (ARC) for a Future Fellowship
1
1
2
(FT200100243).
(
2
b) M. R. Hall, M. Korb, S. A. Moggach and P. J. Low, Organometallics,
020, 39, 2838–2853.
21 O. M. Heigl, M. A. Herker, W. Hiller, F. H. Kohler and A. Schell,
¨
Conflicts of interest
J. Organomet. Chem., 1999, 574, 94–98.
2
2
2
2 M. Iyoda, T. Okabe, T. Kondo, S. Sasaki, H. Matsuyama, Y. Kuwatani
and M. Katada, Chem. Lett., 1997, 104.
3 B. Bildstein, M. Schweiger, H. Kopacka and K. Wurst, J. Organomet.
Chem., 1998, 553, 73–81.
4 R. F. Winter, Organometallics, 2014, 33, 4517–4536.
There are no conflicts to declare.
References
1
X. Dou, X. Yang, G. J. Bodwell, M. Wagner, V. Enkelmann and 25 S. Saloman, A. Hildebrandt, M. Korb, M. Schwind and H. Lang,
K. M u¨ llen, Org. Lett., 2007, 9, 2485.
Z. Anorg. Allg. Chem., 2015, 641, 2282–2290.
4254
|
Chem. Commun., 2021, 57, 4251–4254
This journal is © The Royal Society of Chemistry 2021