Communication
ChemComm
2
(a) Y. H. Liu, J. Deng, J. W. Gao and Z. H. Zhang, Adv. Synth. Catal.,
2012, 354, 441–447; (b) V. Polshettiwar and R. S. Varma, Org. Biomol.
Chem., 2009, 7, 37–40; (c) S. Byun, J. Chung, Y. Jang, J. Kwon,
T. Hyeon and B. M. Kim, RSC Adv., 2013, 3, 16296–16299;
(
d) R. Arundhathi, D. Damodara, P. R. Likhar, M. L. Kantam,
P. Saravanan, T. Magdaleno and S. H. Kwon, Adv. Synth. Catal.,
011, 353, 1591–1600; (e) R. Luque, B. Baruwati and R. S. Varma,
2
Green Chem., 2010, 12, 1540–1543; ( f ) R. B. Nasir Baig and
R. S. Varma, Green Chem., 2012, 14, 625–632; (g) D. Wang,
L. Salmon, J. Ruiz and D. Astruc, Chem. Commun., 2013, 49,
6
956–6958; (h) G. Chouhan, D. Wang and H. Alper, Chem. Commun.,
Fig. 3 Reusability of catalyst 5 in the Suzuki coupling/ATH cascade
2007, 4809–4811.
reactions of 4-iodoacetophenone and phenylboronic acid.
3 (a) M. L. Kantam, J. Yadav, S. Laha, P. Srinivas, B. Sreedhar and
F. Figueras, J. Org. Chem., 2009, 74, 4608–4611; (b) O. Gleeson,
R. Tekoriute, Y. K. Gun’ko and S. J. Connon, Chem. – Eur. J., 2009,
1
5, 5669–5673; (c) A. Hu, T. Gordon, G. T. Yee and W. Lin, J. Am.
phenylboronic acid, where catalyst 5 was easily recovered using
an external magnet that was placed near the reaction vessel.
After nine consecutive runs, the recycled catalyst 5 still afforded
the chiral products in 91% yield with 93% ee in the ninth run
Chem. Soc., 2005, 127, 12486–12487; (d) V. S. Ranganath, J. Kloesges,
A. H. Schafer and F. Glorius, Angew. Chem., Int. Ed., 2010, 49,
7
786–7789; (e) B. Panella, A. Vargas and A. Baiker, J. Catal., 2009,
261, 88–93; ( f ) T. Zeng, L. Yang, R. Hudson, G. Song, A. R. Moores
and C. J. Li, Org. Lett., 2011, 13, 442–445; (g) D. Lee, J. Lee, H. Lee,
S. Jin, T. Hyeon and B. M. Kim, Adv. Synth. Catal., 2006, 348, 41–46.
(a) C. Perego and R. Millini, Chem. Soc. Rev., 2013, 42, 3956–3976;
(see Table S2 and Fig. S9 in the ESI†). The obvious decrease in
4
the yield in the tenth cycle (82% yield with 90% ee) can be
attributed to the 11.3% of Ru loss detected by inductively
coupled plasma optical emission spectrometry (ICP-OES) analysis,
which led to the existence of more than 12% of the unconverted
coupling intermediate. Similarly, catalyst 5 was also repeatedly
recycled in the successive reduction/ATH enantioselective cascade
reaction of (E)-1-(4-styrylphenyl)than-1-one after nine consecutive
runs (see Table S3 and Fig. S10 in the ESI†).
(
5
b) C. Li, H. Zhang, D. Jiang and Q. Yang, Chem. Commun., 2007,
47–558.
5 S. W. Jun, M. Shokouhimehr, D. J. Lee, Y. Jang, J. Park and T. Hyeon,
Chem. Commun., 2013, 49, 7821–7823.
6
(a) N. Ma, Y. Deng, W. Liu, S. Li, J. Xu, Y. Qu, K. Gan, X. Sun and
J. Yang, Chem. Commun., 2016, 52, 3544–3547; (b) Y. Chen, Q. Meng,
M. Wu, S. Wang, P. Xu, H. Chen, Y. Li, L. Zhang, L. Wang and J. Shi,
J. Am. Chem. Soc., 2014, 136, 16326–16334; (c) H. Djojoputro,
X. F. Zhou, S. Z. Qiao, L. Z. Wang, C. Z. Yu and G. Q. Lu, J. Am.
Chem. Soc., 2006, 128, 6320–6321.
In conclusion, we developed a yolk–shell-structured, magne-
tically retrievable bifunctional catalyst through the decoration
of a Pd/C species onto the inner magnetic yolk and the chiral
Ru/diamine species in the nanochannels of the outer silica
shell. This bifunctional catalyst enables efficient Suzuki cross-
coupling/asymmetric transfer hydrogenation of iodoaceto-
phenones and aryl boronic acids via coupling and reduction
processes, and the successive reduction/asymmetric transfer
hydrogenation of the styryl-substituted aromatic ketones via
the controllable reductions of the carbon–carbon and carbon–
oxygen double bonds, providing various chiral products in
high yields and enantioselectivities. The magnetic catalyst can
also be conveniently recovered using an external magnet and
repeatedly recycled, showing that it is practical for use in real
applications.
7 (a) T. Cheng, D. Zhang, H. Li and G. Liu, Green Chem., 2014, 16,
401–3427; (b) Y. Sun, G. Liu, H. Gu, T. Huang, Y. Zhang and H. Li,
Chem. Commun., 2011, 47, 2583–2585; (c) X. Gao, R. Liu, D. Zhang,
M. Wu, T. Cheng and G. Liu, Chem. – Eur. J., 2014, 20, 1515–1519.
8 (a) Y. Su, F. Chang, R. Jin, R. Liu and G. Liu, Green Chem., 2018, 20,
3
5397–5540; (b) J. Y. Xu, T. Y. Cheng, K. Zhang, Z. Y. Wang and
G. H. Liu, Chem. Commun., 2016, 52, 6005–6008.
9
(a) F. X. Felpin, Synlett, 2014, 1055–1067; (b) Y. Li, Z. Zhang, J. Shen
and M. Ye, Dalton Trans., 2015, 44, 16592–16601; (c) M. J. Jin and
D. H. Lee, Angew. Chem., Int. Ed., 2010, 49, 1119–1122.
1
1
1
0 (a) X. Wu, J. Liu, D. D. Tommaso, J. A. Iggo, C. R. A. Catlow, J. Bacsa
and J. Xiao, Chem. – Eur. J., 2008, 14, 7699–7715; (b) K. Matsumura,
S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1997, 119,
8738–8739.
1 (a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1995, 117, 7562–7563; (b) T. Ohkuma, K. Tsusumi,
N. Utsumi, N. Arai, R. Noyori and K. Murata, Org. Lett., 2007, 9,
255–257.
2 (a) Z. Sun, J. Yang, J. Wang, W. Li, S. Kaliaguine, X. Hou, Y. Deng and
D. Zhao, J. Mater. Chem. A, 2014, 2, 6071–6074; (b) T. Yao, T. Cui,
X. Fang, F. Cui and J. Wu, Nanoscale, 2013, 5, 5896–5904; (c) J. Dai,
H. Zou, R. Wang, Y. Wang, Z. Shi and S. Qiu, Green Chem., 2017, 19,
We are grateful to the China National Natural Science
Foundation (21672149) for financial support.
1
336–1344.
3 O. Kr ¨o cher, R. A. K ¨o ppel, M. Fr ¨o ba and A. Baiker, J. Catal., 1998, 178,
84–298.
14 (a) M. Zhu and G. Diao, J. Phys. Chem. C, 2011, 115, 24743–24749;
b) L. Kong, X. Lu, X. Bian, W. Zhang and C. Wang, ACS Appl. Mater.
1
2
Conflicts of interest
(
Interfaces, 2011, 3, 35–42; (c) J. Dai, H. Zou, R. Wang, Y. Wang, Z. Shi
and S. Qiu, Green Chem., 2017, 19, 1336–1344.
There are no conflicts to declare.
1
5 (a) Z. Sun, J. Yang, J. Wang, W. Li, S. Kaliaguine, X. Hou, Y. Deng and
D. Zhao, J. Mater. Chem. A, 2014, 2, 6071–6074; (b) R. K. Sharma,
S. Dutta, S. Sharma, R. Zboril, R. S. Varma and M. B. Gawande, Green
Chem., 2016, 18, 3184–3209; (c) Y. Zhang, Y. Yang, H. Duan and
C. Lu, ACS Appl. Mater. Interfaces, 2018, 10, 44535–44545;
(d) Q. L. Fang, Q. Cheng, H. Xu and S. Xuan, Dalton Trans., 2014,
43(2588), 2588–2595; (e) S. Omar and R. Abu-Reziq, J. Phys. Chem. C,
2014, 118, 30045–30056.
Notes and references
1
(a) S. Shylesh, V. Sch u¨ nemann and W. R. Thiel, Angew. Chem., Int.
Ed., 2010, 49, 3428–3459; (b) V. Polshettiwar, R. Luque, A. Fihri,
H. Zhu, M. Bouhrara and J. M. Basset, Chem. Rev., 2011, 111,
3
036–3075; (c) M. B. Gawande, P. S. Branco and R. S. Varma, Chem.
Soc. Rev., 2013, 42, 3371–3393.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13578--13581 | 13581