Page 3 of 4
Journal Name
ChemComm
DOI: 10.1039/C6CC02809H
in Table 1). This behaviour directly follows from the Arrhenius rate
law.
†
Footnotes should appear here. These might include comments
relevant to but not central to the matter under discussion, limited
experimental and spectral data, and crystallographic data.
Previous studies by the groups of Stephan and Cantat have
established that basic guanidines, Nꢀheterocyclic carbenes and
phosphines can promote the hydroboration of CO2.6f, 11 Mechanistic
and computational investigations have shown that basic catalysts
proceed through the activation of the B–H bond, by coordination of
the Lewis base to the hydroborane.6f Therefore we propose here that
the benefit of combining a trivalent phosphorus function with a
remote Lewis acid, as in 3-BMes2, results from a concomitant Hꢀ
transfer / boraneꢀformate adduct formation, in the first step of the
CO2 reduction process (Scheme 3). In this approach, linking together
the Lewis acid and the Lewis base functions should reduce the
volume of the nonꢀproductive region of the conformational space
between the catalysts and the substrates and thus increase further the
reaction rates.12 In fact, experimentally, catalysts 3-BMes2 and 3-
Bpin are about twice as reactive as the corresponding bimolecular
systems at 25 °C. This difference of reactivity corresponds roughly
to a decrease of ca. 1 kcal/mol in activation energy, consistent with
an entropic effect.
Electronic Supplementary Information (ESI) available: Fig. S1 and
experimental procedures. See DOI: 10.1039/c000000x/
1
a) M. Aresta, Carbon Dioxide as Chemical Feedstock, WileyꢀVCH,
Weinheim, 2010; b) P. G. Jessop, T. Ikariya and R. Noyori, Chem.
Rev., 1995, 95, 259; c) K. Huang, C. L. Sun and Z. J. Shi, Chem. Soc.
Rev., 2011, 40, 2435; d) C. Federsel, A. Boddien, R. Jackstell, R.
Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy and M. Beller
,
Angew. Chem. Int. Ed., 2010, 49, 9777; e) C. Federsel, R. Jackstell
and M. Beller, Angew. Chem, Int. Ed., 2010, 49, 6254; f) A. Tlili, X.
Frogneux, E. Blondiaux and T. Cantat, Angew. Chem. Int. Ed., 2014, 53,
2543; g) A. Tlili, E. Blondiaux, X. Frogneux, and T. Cantat, Green.
Chem., 2015, 17, 157; h) C. A. Huff and M. S. Sanford, J. Am. Chem.
Soc., 2011, 133, 18122; i) K. Tominaga, Y. Sasaki, M. Kawai, T.
Watanabe and M. Saito, Chem. Commun., 1993, 629; j) S.
Wesselbaum, T. V. Stein, J. Klankermayer and W. Leitner, Angew.
Chem. Int. Ed., 2012, 51, 7499; k) S. Savourey, G. Lefèvre, J.ꢀC.
Berthet, P. Thuéry, C. Genre and T. Cantat, Angew. Chem. Int. Ed.,
2014, 53, 10466; l) S. Wesselbaum, V. Moha, M. Meuresch, S.
Brosinski, K. M. Thenert, J. Kothe, T. vom Stein, U. Englert, M.
Hölscher, J. Klankermayer and W. Leitner, Chem. Sci., 2015,
m) S. Bontemps, Coord. Chem. Rev., 2016, 308, 117.
6, 693;
2
3
4
5
CRC Handbook of Chemistry and Physics, 92th ed., Ed. W. M.
Haynes, D. R. Lide, The Chemical Rubber Co., 2011
For a general recent review see: C. C. Chong and R. Kinjo, ACS
Catal., 2015, , 3238.
Scheme 3. Proposed synergistic effect of phosphino-borane catalysts in the
.
hydroboration of CO2
5
Overall, we have demonstrated for the first time that the combination
of phosphines and boranes offers a synergistic effect in the catalytic
reduction of CO2 with hydroboranes. While the phosphine and the
borane fragments, taken separately, do not catalyse the reduction of
CO2, the P/B derivatives 3, combining the two functions, display
high catalytic activity.
S. Chakraborty, J. Zhang, J. A. Krause, and H. Guan, J. Am. Chem.
Soc., 2010, 132, 8872.
a) S. Bontemps, L. Vendier and S. SaboꢀEtienne, Angew. Chem. Int.
Ed., 2012, 51, 1671; b) S. Bontemps, and S. SaboꢀEtienne, Angew.
Chem. Int. Ed., 2013, 52, 10253.
6
a) M.ꢀA. Courtemanche, M.ꢀA. Légaré, L. Maron, and F.ꢀG.
Fontaine, J. Am. Chem. Soc., 2013, 135
Courtemanche, M.ꢀA. Légaré, L. Maron, and F.ꢀG. Fontaine, J. Am.
Chem. Soc., 2014, 136 10708; c) F.ꢀG. Fontaine, M.ꢀA.
, 9326; b) M.ꢀA.
Notes and references
a NIMBE, CEA, CNRS, Université ParisꢀSaclay, GifꢀsurꢀYvette, France
,
Courtemanche, and M.ꢀA. Légaré, Chem. Eur. J., 2014, 11, 2990; d)
M.ꢀA. Légaré, M.ꢀA. Courtemanche and F.ꢀG. Fontaine, Chem.
Commun., 2014, 50, 11362, e) R. Declercq, G. Bouhadir, D.
Bourissou, M.ꢀA. Légaré, M.ꢀA. Courtemanche, K. S. Nahi, N.
Fax: (+): (+33) 1 6908 6640
b
Institut de Chimie des Substances Naturelles, CNRS UPR 2301,
Université ParisꢀSud, Université ParisꢀSaclay, 1 av. de la Terrasse, 91198
GifꢀsurꢀYvette (France)
Bouchard, F.ꢀG. Fontaine, and L. Maron, ACS Catal., 2015, 5, 2513;
f) C. Das Neves Gomes, E. Blondiaux, P. Thuéry and T. Cantat,
Chem. Eur. J., 2014, 20, 7098; g) T. Cantat, C. Gomes, E. Blondiaux,
O. Jacquet, patent WO2014162266 filed April 3, 2013.
7
8
a) E. Blondiaux, J. Pouessel and T. Cantat, Angew. Chem. Int. Ed.
2014, 53, 12186; b) T. Wang and D. W. Stephan, Chem. Commun.,
2014, 50, 7007; c) S. Y.ꢀF. Ho, C.ꢀW. So, N. SaffonꢀMerceron and N.
Mézailles, Chem. Commun., 2015, 51, 2107.
Acknowledgements
We thank the CHARMMMAT Laboratory of Excellence, CEA, CNRS,
Institut de Chimie des Substances Naturelles, and the ANR for financial
support. The European Research Council is acknowledged for an ERC
Starting Grant to T.C (Grant Agreement no. 336467).
a) M. W. P. Bebbington, S. Bontemps, G. Bouhadir, M. J. Hanton, R.
P. Tooze, H. Van Rensburg and D. Bourissou, New J. Chem., 2010,
34, 1556. For some applications of phosphinoꢀborane compounds in
catalysis, see: b) S. Bontemps, G. Bouhadir, K. Miqueu, D. Bourissou
J. Am. Chem. Soc. 2006, 128, 12056; c) S. Porcel, G. Bouhadir, N.
This journal is © The Royal Society of Chemistry 2012
Chem. Commun., 2016, 00, 1-3 | 3