Photochemistry and Photobiology, 2013, 89 1069
4
70 nm, a formation process can be observed which should be
14. El-Agamey, A. and S. Fukuzumi (2011) Laser flash photolysis study
on the retinol radical cation in polar solvents. Org. Biomol. Chem. 9,
6437–6446.
•
+
assigned to the formation of DMA (Fig. 6B). The similar phe-
•
+
nomena were also observed for the reaction of ATRA with
DPA (data not shown). Therefore, it can be inferred that electron
transfer should be responsible for the efficient quenching reac-
1
5. Sahyun, M. R. V. and N. Serpone (1998) Photophysics of all-trans-
retinoic acid (ATRA) chemisorbed to nanoparticulate TiO : evidence
2
for TiO * to ATRA energy transfer and reverse electron transfer sen-
2
•+
sitization. J. Photochem. Photobiol., A 115, 231–238.
6. Lo, K. K. N., E. J. Land and T. G. Truscott (1982) Primary interme-
tions of ATRA by DMA and DPA.
1
1
1
diates in the pulse irradiation of reinoids. Photochem. Photobiol. 36,
1
39–145.
CONCLUSION
7. R ꢀo z_ anowska, M., A. Cantrell, R. Edge, E. J. Land, T. Sarna and
T. G. Truscott (2005) Pulse radiolysis study of the interaction of reti-
noids with peroxyl radicals. Free Radic. Biol. Med. 39, 1399–1405.
8. Raghavan, N. V., P. K. Das and K. Bobrowski (1981) Transient phe-
nomena in the pulse radiolysis of retinyl polyenes.1. Radical anions.
J. Am. Chem. Soc. 103, 4569–4573.
We investigated the photochemistry of ATRA in microemulsion
and characterized the properties of reaction products. 355 nm
LFP of ATRA in both acidic and alkalic condition leads to the
generation of ATRA via biphotonic processes. It was found
that ATRA can efficiently react with Lyso and Tyr and Trp,
which is suggestive of the possibility of ATRA to damage pro-
teins. Many antioxidants, such as VC, GA and Cur, were proved
to be efficient quenchers for ATRA .
•
+
•
+
19. Bobrowski, K. and P. K. Das (1982) Transient phenomena in the
pulse radiolysis of retinyl polyenes. 2. protonation kinetics. J. Am.
Chem. Soc. 104, 1704–1709.
•
+
2
2
2
0. Bobrowski, K. and P. K. Das (1985) Transient phenomena in the pulse
radiolysis of retinyl polyenes. 4. environmental effects on absorption
maximum of retinal radical anion. J. Phys. Chem. 89, 5733–5738.
1. Bobrowski, K. and P. K. Das (1986) Transient phenomena in the
pulse radiolysis of retinyl polyenes. 5. association of radical cations
with parent molecules. J. Phys. Chem. 90, 927–931.
2. Bhattacharyya, K., K. Bobrowski, S. Rajadurai and P. K. Das (1988)
Transient phenomena in the pulse radiolysis of retinyl polyenes. 7.
radical anions of vitamin A and its derivatives. Photochem. Photo-
biol. 47, 73–83.
•+
Acknowledgements—This work was financially supported by the 973
Program (grant 2010CB912604 and 2010CB933901), the International
S&T Cooperation Program of China (grant 0102011DFA32980), the
National Natural Science Foundation of China (grant, 81271694), the
Science and Technology Commission of Shanghai Municipality (grant
11411951500 and 12nm0502200), 2012 and the Fundamental Research
2
3. Takemura, T., K. Chihara, R. S. Becker, P. K. Das and G. L. Hug
Funds for the Central Universities (grant 2000219085).
(
1980) Visual Pigments. 11. Spectroscopy and photophysics of reti-
noic acids and all-trans-methyl retinoate. J. Am. Chem. Soc. 102,
604–2609.
2
2
4. McGarry, P. F., J. Cheh, B. Ruiz-Silva, S. H. Hu, J. Wang, K. Nak-
REFERENCES
anishi and N. J. Turro (1996) A Laser flash photolysis study of
1
1-cis-locked retinal analogues. J. Phys. Chem. 100, 646–654.
1
2
3
4
. Liao, Y. P., S. Y. Ho and J. C. Liou (2004) Non-genomic regulation
of transmitter release by retinoic acid at developing motoneurons in
xenopus cell culture. J. Cell Sci. 117, 2917–2924.
. Mark, M., N. B. Ghyselinck and P. Chambon (2009) Function of ret-
inoic acid receptors during embryonic development. Nucl. Recept.
Signal. 7, 1–15.
25. Dillon, J., E. R. Gaillard, P. Bilski, C. F. Chignell and K. J. Reszka
(1996) The photochemistry of the retinoids as studied by steady-state
and pulsed methods. Photochem. Photobiol. 63, 680–685.
26. Pienta, N. J. and R. J. Kessler (1992) Pentaenyl cation from the pho-
tolysis of retinyl acetate. Solvent effect on the leaving group ability
and relative nucleophilicities: an unequivocal and quantitative dem-
onstration of the importance of hydrogen bonding. J. Am. Chem.
Soc. 114, 2419–2428.
27. Wang, Z. and W. G. McGimpsey (1996) Photoinduced isomerization
and electron transfer in the all-trans-retinyl cation. J. Photochem.
Photobiol., A 93, 151–155.
28. Harper, W. S. and E. R. Gaillard (2001) Studies of all-trans-retinal
as a photooxidizing agent. Photochem. Photobiol. 73, 71–76.
29. Ortiz, A., F. J. Aranda and J. C. G ꢀo mez-Fern ꢀa ndez (1992) Interac-
tion of retinol and retinoic acid with phospholipid membranes. A dif-
ferential scanning calorimetry study. Biochim. Biophys. Acta 1106,
282–290.
. Mongan, N. P. and L. J. Gudas (2007) Diverse actions of retinoid
receptors in cancer prevention and treatment. Differentiation 75,
853–870.
. Tallman, M. S., J. W. Andersen, C. A. Schiffer, F. R. Appelbaum, J.
H. Feusner, A. Ogden, L. Shepherd, C. Willman, C. D. Bloomfield,
J. M. Rowe and P. H. Wiernik (1997) All-trans-retinoic acid in acute
promyelocytic leukemia. N. Engl. J. Med. 337, 1021–1028.
5
6
. Bushue, N. and Y. Y. Wan (2010) Retinoid pathway and cancer
therapeutics. Adv. Drug Deliv. Rev. 62, 1285–1298.
. Kligman, A. M., G. L. Grove, R. Hirose and J. J. Leyden (1986)
Topical tretinoin for photoaged skin. J. Am. Acad. Dermatol. 15,
8
36–859.
30. Svensson, F. R., P. Lincoln, B. Nord ꢀe n and E. K. Esbj €o rner (2007)
Retinoid chromophores as probes of membrane lipid order. J. Phys.
Chem. B 111, 10839–10848.
31. Li, K., M. Wang, J. Wang, R. R. Zhu, D. M. Sun, X. Y. Sun and
S. L. Wang (2013) Photoionization of oxidized coenzyme Q in
microemulsion: laser flash photolysis study in biomembrane-like system.
Photochem. Photobiol. 89, 61–67.
32. Noy, N. (1992) The ionization behavior of retinoic acid in lipid
bilayers and in membrances. Biochim. Biophys. Acta 1106, 159–164.
33. Buxton, G. V., C. L. Greenstock, W. P. Helman and A. B. Ross
(1988) Critical review of rate constants for reactions of hydrated
electrons, hydrogen atoms and hydroxyl radicals in aqueous solution.
J. Phys. Chem. Ref. Data 17, 513–886.
34. Bucher, G., C. Y. Lu and W. Sander (2005) The photochemistry of
lipoic acid: photoionization and observation of a triplet excited state
of a disulfide. ChemPhysChem 6, 2607–2618.
7
. Ligman, A. M., D. Dogadkina and R. M. Lavker (1993) Effects of
topical tretinoin on non-sun-exposed protected skin of the elderly.
J. Am. Acad. Dermatol. 29, 25–33.
. Teelmann, K. (1989) Retinoids: toxicology and teratogenicity to date.
Pharmac. Ther. 40, 29–43.
. Ferguson, J. and B. E. Johnson (1989) Retinoid associated photo-
toxicity and photo-sensitivity. Pharmac. Ther. 40, 123–135.
0. Ferguson, J. and B. E. Johnson (1986) Photosensitivity due to
8
9
1
retinoids: clinical and laboratory studies. Brit. J. Dermatol. 115,
2
75–283.
1
1. Tolleson, W. H., S. H. Cherng, Q. S. Xia, M. Boudreau, J. J. Yin,
W. G. Wamer, P. C. Howard, H. T. Yu and P. P. Fu (2005) Photo-
decomposition and phototoxicity of natural retinoids. Int. J. Environ.
Res. Public Health 2, 147–155.
2. Bobrowski, K. and P. K. Das (1987) Transient phenomena in the
pulse radiolysis of retinyl polyenes. 6. Radical ions of retinal homo-
logues. J. Phys. Chem. 91, 1210–1215.
3. Bobrowski, K. and P. K. Das (1985) Transient phenomena in the
pulse radiolysis of retinyl polyenes. 3. radical cations. J. Phys.
Chem. 89, 5079–5085.
1
35. Chetyrkin, S. V., M. E. Mathis, A. J. L. Ham, D. L. Hachey,
B. G. Hudson and P. A. Voziyan (2008) Propagation of protein glyca-
tion damage involves modification of tryptophan residues via reactive
oxygen species: inhibition by pyridoxamine. Free Radic. Biol. Med. 44,
1276–1285.
1