D
K. Tanaka et al.
Letter
Synlett
N. Antiviral Chem. Chemother. 1992, 3, 195. (d) Conti, C.;
Genovese, D.; Santoro, R.; Stein, M. L.; Orsi, N.; Fiore, L. Antimi-
crob. Agents Chemother. 1990, 34, 460.
H
O
OMe
O
OMe
H+
H
CH(OMe)3
OMe
(4) (a) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.;
Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655. (b) Pathak, T. P.;
Sigman, M. S. J. Org. Chem. 2011, 76, 9210.
– MeOH
– H+
OH
OH
– H2O
A
B
C
OMe
OMe
(5) Jaworski, A. A.; Scheidt, K. A. J. Org. Chem. 2016, 81, 10145.
(6) (a) Tanaka, K.; Sukekawa, M.; Shigematsu, Y.; Hoshino, Y.;
Honda, K. Tetrahedron 2017, 73, 6456. (b) Tanaka, K.; Hoshino,
Y.; Honda, K. Heterocycles 2017, 95, 474. (c) Tanaka, K.; Hoshino,
Y.; Honda, K. Tetrahedron Lett. 2016, 57, 2448. (d) Tanaka, K.;
Shigematsu, Y.; Sukekawa, M.; Hoshino, Y.; Honda, K. Tetrahe-
dron Lett. 2016, 57, 5914. (e) Miyazaki, H.; Honda, Y.; Honda, K.;
Inoue, S. Tetrahedron Lett. 2000, 41, 2643. (f) Inoue, S.; Wang, P.;
Nagao, M.; Hoshino, Y.; Honda, K. Synlett 2005, 469.
(g) Shrestha, K. S.; Honda, K.; Asami, M.; Inoue, S. Bull. Chem.
Soc. Jpn. 1999, 72, 73. (h) Tanaka, K.; Sukekawa, M.; Hoshino, Y.;
Honda, K. Chem. Lett. 2018, 47, 440. (i) Tanaka, K.; Sukekawa, M.;
Kishimoto, M.; Hoshino, Y.; Honda, K. Heterocycles DOI:
10.3987/COM-18-S(F)5. (j) Tanaka, K.; Kishimoto, M.; Hoshino,
Y.; Honda, K. Tetrahedron Lett. 2018, 59, 1841.
Ph
Ph
Ph
H+
– MeOH
Ph
C
OMe
MeO
OMe
O
OMe
O
OMe
D
F
G
E
Scheme 4 The proposed reaction mechanism
aldehydes having electron-withdrawing groups with phe-
nylacetaldehyde dimethyl acetals gave good regio- and di-
astereoselectivities. The present reaction provides versatile
access to functionalized isoflavanes, and constitutes a use-
ful tool for the synthesis of biologically active molecules.
(7) Miyazaki, H.; Honda, K.; Asami, M.; Inoue, S. J. Org. Chem. 1999,
64, 9507.
Supporting Information
(8) Synthesis of Isoflavane 6; General Procedure: Salicylaldehyde
1 (0.25 mmol), phenylacetaldehyde dimethyl acetal 8 (0.75
mmol) and trimethyl orthoformate (0.50 mmol) were dissolved
in anhydrous toluene (2.5 mL) under nitrogen. Trifluorometh-
anesulfonic acid (20 mol%) was added into the reaction mixture.
After being stirred at 40 °C for 1 h, the reaction was quenched
with 5% aq. NaHCO3. The organic layer was separated and the
aqueous layer was extracted with ethyl acetate. The combined
organic layer was dried over MgSO4, and filtered. The filtrate
was concentrated in vacuo. The resulting residue was purified
by column chromatography on silica gel (hexane/ethyl acetate,
50:1) to afford isoflavan 6. Characterization data for 2,4-dime-
thoxy-6-nitro-3-(p-tolyl)phenylchromane (6a): Yield: 0.1368 g
(84%); yellow solid; dr 30:1. 1H NMR (500 MHz, CDCl3): δ = 8.29
(dd, J = 2.7, 0.8 Hz, 1 H), 8.16 (dd, J = 8.7, 3.0 Hz, 1 H), 7.10 (d, J =
1.3 Hz, 4 H), 7.00 (d, J = 1.3 Hz, 1 H), 5.50–5.47 (m, 1 H), 4.59 (d,
J = 4.7 Hz, 1 H), 3.55 (s, 3 H), 3.48 (t, J = 5.0 Hz, 1 H), 3.38 (s, 3 H),
2.31 (s, 3 H); 13C NMR (126 MHz, CDCl3): δ = 157.5, 141.6, 137.1,
132.6, 129.1, 128.9, 125.4, 124.4, 123.8, 117.3, 103.3, 74.4, 57.1,
56.6, 45.1, 21.0; IR (ATR): 2916, 1516, 1338, 1107, 1061, 1030,
918, 753, 616 cm–1; HRMS (ESI+): m/z [M + H]+ calcd for
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
(1) (a) Cinzia, L.; Campo, F. M.; Lisa, P. A.; Osmany, C.-R.; Marquez,
H. I.; Luca, R. J. Agric. Food Chem. 2010, 58, 2209. (b) Grosvenor,
P. W.; Gray, D. O. J. Nat. Prod. 1998, 61, 99. (c) Wenjun, P.;
Dongmei, W.; Dan, Z. Sci. Rep. 2015, 5, 13914.
(d) Kırmızıbekmez, H.; Uysal, G. B.; Masullo, M.; Demirci, F.;
Bağcı, Y.; Kan, Y.; Piacente, S. Fitoterapia 2015, 103, 289. (e) Sun,
X.; He, C.; Yang, X.; Guo, L.; Li, X. Biochem. Syst. Ecol. 2015, 61,
516. (f) Miyasea, T.; Sano, M.; Yoshino, K.; Nonaka, K. Phyto-
chemistry 1999, 52, 311. (g) Shakeel, U.; Inamullah, F.; Fatima, I.;
Khan, S.; Kazmi, M. H.; Malik, A.; Tareen, R. B.; Abbas, T. Chem.
Nat. Compd. 2016, 52, 611. (h) Bonde, M. R.; Millar, R. L.;
Incham, J. L. Phytochemistry 1973, 12, 2957.
(2) For representative syntheses of isoflavones with electron-
donating substituents, see: (a) Tilley, A. J.; Zanatta, S. D.; Qin, C.
X.; Kim, I.-K.; Seok, Y.-M.; Stewart, A.; Woodmand, O. L.;
Williams, S. J. Bioorg. Med. Chem. 2012, 20, 2353. (b) Gharpure,
S. J.; Sathiyanarayanan, A. M.; Jonnalagadda, P. Tetrahedron Lett.
2008, 49, 2974. (c) Feng, Z.-G.; Bai, W.-J.; Pettus, T. R. R. Angew.
Chem. Int. Ed. 2015, 54, 1864. (d) Nakamura, K.; Ohmori, K.;
Suzuki, K. Chem. Commun. 2015, 7012. (e) Takashima, Y.;
Kaneko, Y.; Kobayashi, Y. Tetrahedron 2010, 66, 197. (f) Zhang, J.;
Zhang, S.; Yang, H.; Zhou, D.; Yu, X.; Wang, W.; Xie, H. Tetrahe-
dron Lett. 2018, 59, 2407.
C
18H20NO5: 330.1336; found: 330.1342.
(9) (a) Full data for the X-ray crystal structure analysis can be found
in the Supporting Information. (b) Farrugia, L. J. J. Appl. Crystal-
logr. 2012, 45, 849.
(10) See for instance: Blaskol, G.; Cordell, G. A. Tetrahedron 1989, 45,
6361.
(11) (a) Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2004, 69, 9196.
(b) Inoue, T.; Inoue, S.; Sato, K. Chem. Lett. 1989, 18, 653.
(c) Jones, R. M.; Selenski, C.; Pettus, T. R. R. J. Org. Chem. 2002,
67, 6911. (d) Marsini, M. A.; Huang, Y.; Lindsey, C. C.; Wu, K.-L.;
Pettus, T. R. R. Org. Lett. 2008, 10, 1477.
(3) (a) Contil, C.; Desideria, N.; Orsil, N.; Sestiliz, I.; Stein, M. L. Eur.
J. Med. Chem. 1990, 25, 725. (b) Burali, C.; Desideri, N.; Stein, M.
L.; Conti, C.; Orsi, N. Eur. J. Med. Chem. 1987, 22, 119.
(c) Desideri, N.; Conti, C.; Sestili, I.; Tomao, P.; Stein, M. L.; Orsi,
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–D