5806
T. Mandal, C.-G. Zhao / Tetrahedron Letters 48 (2007) 5803–5806
4441–4444; (d) Enders, D.; Seki, A. Synlett 2002, 26–28; (e)
ArS
ArS
ArS
ArS
Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F.,
III. Org. Lett. 2004, 6, 2527–2530; (f) Ishii, T.; Fujioka, S.;
Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126,
9558–9559; (g) Cobb, A. J. A.; Longbottom, D. A.; Shaw,
D. M.; Ley, S. V. Chem. Commun. 2004, 1808–1809; (h)
Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J.
B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84–96; (i)
Kotrusz, P.; Toma, S. L.; Schmalz, H.-G.; Adler, A. Eur. J.
Org. Chem. 2004, 1577–1583; (j) Wang, W.; Wang, J.; Li,
H. Angew. Chem., Int. Ed. 2005, 44, 1369–1371; (k)
Terakado, D.; Takano, M.; Oriyama, T. Chem. Lett.
2005, 34, 962–963; (l) Mitchell, C. E. T.; Cobb, A. J. A.;
Ley, S. V. Synlett 2005, 611–614; (m) Tsogoeva, S. B.;
Yalalov, D. A.; Hateley, M. J.; Weckbecker, C.; Huthm-
acher, K. Eur. J. Org. Chem. 2005, 4995–5000; (n) Luo, S.;
Mi, X.; Liu, S.; Xu, H.; Cheng, J.-P. Chem. Commun. 2006,
3687–3689; (o) Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y.
Org. Lett. 2006, 8, 2901–2904; (p) Wang, J.; Li, H.; Lou, B.;
Zu, L.; Guo, H.; Wang, W. Chem. Eur. J. 2006, 12, 4321–
4332; (q) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.;
Cheng, J.-P. Angew. Chem., Int. Ed. 2006, 45, 3093–3907;
(r) Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.;
Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006,
128, 4966–4967; (s) Zhu, M.-K.; Cun, L. F.; Mi, A.-Q.;
Jiang, Y.-Z.; Gong, L.-Z. Tetrahedron: Asymmetry 2006,
17, 491–493; (t) Pansare, S. V.; Pandya, K. J. J. Am. Chem.
Soc. 2006, 128, 9624–9625; (u) Zu, L.; Wang, J.; Li, H.;
Wang, W. Org. Lett. 2006, 8, 3077–3079; (v) Palomo, C.;
N
N
NO2
O2N
H
H
H
H
H
Ph
H
H
Ph
cyclohexanone
Figure 2. Proposed transition state models.
R1
aldehyde
substrate (right structure), the trans-enamine5a double
bond is away from the thioacetal group and the attack
of this enamine onto the si face of the nitrostyrene leads
to the formation of the observed opposite enantiomer of
the syn diastereomer. Similar phenomena have been
observed for other proline-derivatives, too.5d
In summary, we have synthesized some readily accessi-
ble and highly tunable prolinal dithioacetal catalysts
for the direct Michael addition of both ketones and
aldehydes to b-nitrostyrenes. Uniformly high diastereo-
selectivities and enantioselectivities have been obtained
for both ketone and aldehyde substrates.
Acknowledgements
The authors thank the Welch Foundation (Grant No.
AX-1593) and the NIH-MBRS program (S06
GM08194) for the generous financial support of this
research.
´
Vera, S.; Mielgo, A.; Gomoz-Bengoa, E. Angew. Chem.,
Int. Ed. 2006, 45, 5984–5987; (w) Palomo, C.; Mielgo, A.
Angew. Chem., Int. Ed. 2006, 45, 7876–7880; (x) Diez, D.;
Gil, M. J.; Moro, R. F.; Marcos, I. S.; Garcia, P.; Basabe,
P.; Garrido, N. M.; Broughton, H. B.; Urones, J. G.
Tetrahedron 2007, 63, 740–747; (y) Cao, Y.-J.; Lai, Y.-Y.;
Wang, X.; Li, Y.-J.; Xiao, W.-J. Tetrahedron Lett. 2007, 48,
21–24; (z) Vishnumaya; Singh, V. K. Org. Lett. 2007, 9,
Supplementary data
´
1117–1119; Almaßsi, D.; Alonso, D. A.; Gomez-Bengoa, E.;
Supplementary data associated with this article can be
´
Nagel, Y.; Najera, Ca. Eur. J. Org. Chem. 2007, 2328–
2343.
5. For examples, see: (a) Hayashi, Y.; Gotoh, H.; Hayashi, T.;
Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212–4215; (b)
Enders, D.; Huttl, C.; Grondal, M. R. M.; Raabe, G.
Nature 2006, 441, 861–863; See also: (c) Betancort, J. M.;
Barbas, C. F., III. Org. Lett. 2001, 3, 3737–3740; (d)
Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611–3614; (e)
Andrey, O.; Alexakis, A.; Tomassini, A.; Bernardinelli, G.
Adv. Synth. Catal. 2004, 346, 1147–1168; (f) Andrey, O.;
Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, 5, 2559–
2561; (g) Betancort, J. M.; Sakthivel, K.; Thayumanavan,
R.; Tanaka, F.; Barbas, C. F., III. Synthesis 2004, 1509–
1521; (h) Luo, S.; Xu, H.; Mi, X.; Li, J.; Zheng, X.; Cheng,
J.-P. J. Org. Chem. 2006, 71, 9244–9247.
6. For examples of primary amine-catalyzed reactions, see: (a)
Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451–1453;
(b) Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Adv.
Synth. Catal. 2006, 348, 826–832; (c) Xu, Y.; Zou, W.;
Sunden, H.; Ibrahem, I.; Cordova, A. Adv. Synth. Catal.
2006, 348, 418–424; (d) Huang, H.; Jacobsen, E. N. J. Am.
References and notes
1. For review, see: Perlmutter, P. Conjugate Addition Reac-
tions in Organic Synthesis; Pergamon: Oxford, 1992.
2. For reviews on asymmetric Michael addition reaction, see:
(a) Tomioka, K.; Nagaoka, Y.; Yamaguchi, M. In Com-
prehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer: New York, 1999; Vol.
III, Chapter 31.1 and 31.2, pp 1105–1139; (b) Krause, N.;
Hoffmann-Ro¨der, A. Synthesis 2001, 171–196; (c) Berner,
O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002,
1877–1894; (d) Christoffers, J.; Baro, A. Angew. Chem., Int.
Ed. 2003, 42, 1688–1690.
3. For reviews, see: (a) Dalko, P. I.; Moisan, L. Angew. Chem.,
Int. Ed. 2004, 43, 5138–5175; (b). Acc. Chem. Res. 2004, 37,
special issue on organocatalysis; (c) Berkessel, A.; Gro¨ger,
H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim,
2005.
´
Chem. Soc. 2006, 128, 7170–7171; (e) Xu, Y.; Cordova, A.
Chem. Commun. 2006, 460–462.
7. Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. 1988,
53, 2861–2863.
8. See Supplementary data for details.
9. Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413–
1423.
4. For leading examples, see: (a) List, B.; Pojarliev, P.; Martin,
H. J. Org. Lett. 2001, 3, 2423–2425; (b) Sakthivel, K.; Notz,
W.; Bui, T.; Barbas, C. F., III. J. Am. Chem. Soc. 2001, 123,
5260–5267; (c) Betancort, J. M.; Sakthivel, K.; Thayuman-
avan, R.; Barbas, C. F., III. Tetrahedron Lett. 2001, 42,