Organic Letters
Letter
β-nitrostyrene. Interestingly, the mechanical bond deeply
affects the enantiocontrol of the process allowing an
enantiodivergent synthesis of γ-nitroketones. Starting from
the same chiral prolinamide backbone, both enantiomers of the
final products were accessed just by selecting the interlocked or
noninterlocked catalysts. A DFT study shows that with the
rotaxanes as catalysts the macrocycle plays a crucial role by
establishing a hydrogen bond with the electrophile in the TS,
thus favoring the attack of the nucleophile to the Si face of the
nitrostyrene. On the contrary, when the nude threads were
employed the enantioselective courses of these processes were
reversed as result of a different hydrogen bond between both
reactants now involving the NH group of the thread. These
examples could hopefully help to the future design of new
interlocked catalysts by placing anchoring units for reactants in
thread and ring, by means of which the mechanical bond could
be further exploited in the field of asymmetric synthesis.
(4) Solvent variation: (a) Sohtome, Y.; Tanaka, S.; Takada, K.;
Yamaguchi, T.; Nagasawa, K. Solvent-dependent enantiodivergent
Mannich-type reaction: utilizing a conformationally flexible guani-
dine/bisthiourea organocatalyst. Angew. Chem., Int. Ed. 2010, 49,
9
254−9257 Reactant variation: . (b) Stymiest, J. L.; Bagutski, V.;
French, R. M.; Aggarwal, V. K. Enantiodivergent conversion of chiral
secondary alcohols into tertiary alcohols. Nature 2008, 456, 778−782.
(5) (a) Blackmond, D. G.; Moran, A.; Hughes, M.; Armstrong, A.
Unusual reversal of enantioselectivity in the proline-mediated α-
amination of aldehydes induced by tertiary amine additives. J. Am.
Chem. Soc. 2010, 132, 7598−7599. (b) Macharia, J.; Wambua, V.;
Hong, Y.; Harris, L.; Hirschi, J. S.; Evans, G. B.; Vetticatt, M. J. A
designed approach to enantiodivergent enamine catalysis. Angew.
Chem., Int. Ed. 2017, 56, 8756−8760.
(6) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. Catalytic asymmetric
induction. Highly enantioselective addition of dialkylzincs to
aldehydes using chiral pyrrolidinylmethanols and their metal salts. J.
Am. Chem. Soc. 1987, 109, 7111−7115.
(7) (a) Wang, J.; Feringa, B. L. Dynamic control of chiral space in a
catalytic asymmetric reaction using a molecular motor. Science 2011,
M.; Bernardi, L.; Otten, E.; Feringa,
B. L. Dual stereocontrol over the Henry reaction using a light- and
ASSOCIATED CONTENT
Supporting Information
331, 1429−1432. (b) Vlatkovic,
́
■
*
S
heat-triggered organocatalyst. Chem. Commun. 2014, 50, 7773−7775.
(c) Zhao, D.; Neubauer, T. M.; Feringa, B. L. Dynamic control of
chirality in phosphine ligands for enantioselective catalysis. Nat.
Commun. 2015, 6, 6652. (d) Kassem, S.; Lee, A. T. L.; Leigh, D. A.;
Marcos, V.; Palmer, L. I.; Pisano, S. Stereodivergent synthesis with a
programmable molecular machine. Nature 2017, 549, 374−378.
Experimental procedures, NMR spectra, computational
details, and HPLC traces (PDF)
(
8) Bruns, C. J.; Stoddart, J. F. The Nature of the Mechanical Bond:
From Molecules to Machines; Wiley: New York, 2016.
9) (a) Neal, E. A.; Goldup, S. M. Chemical consequences of
(
AUTHOR INFORMATION
■
*
*
mechanical bonding in catenanes and rotaxanes: isomerism,
modification, catalysis and molecular machines for synthesis. Chem.
Commun. 2014, 50, 5128−5142. (b) Lewis, J. E. M.; Galli, M.;
Goldup, S. M. Properties and emerging applications of mechanically
interlocked ligands. Chem. Commun. 2017, 53, 298−312. (c) Marti-
nez-Cuezva, A.; Bautista, D.; Alajarin, M.; Berna, J. Enantioselective
formation of 2-azetidinones by ring-assisted cyclization of interlocked
N-(α-methyl)benzyl fumaramides. Angew. Chem., Int. Ed. 2018, 57,
ORCID
6563−6567. (d) Martinez-Cuezva, A.; Lopez-Leonardo, C.; Bautista,
D.; Alajarin, M.; Berna, J. Stereocontrolled synthesis of β-lactams
within [2]rotaxanes: showcasing the chemical consequences of the
mechanical bond. J. Am. Chem. Soc. 2016, 138, 8726−8729.
Notes
(10) (a) Thordarson, P.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R.
The authors declare no competing financial interest.
J. M. Epoxidation of polybutadiene by a topologically linked catalyst.
Nature 2003, 424, 915−918. (b) Berna, J.; Alajarin, M.; Orenes, R.-A.
Azodicarboxamides as template binding motifs for the building of
hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 2010, 132,
ACKNOWLEDGMENTS
■
This work was supported by the MINECO (CTQ2017-87231-
P and CTQ2015-66624-P) with joint financing by FEDER
́
Funds and Fundacion Seneca-CARM (Project 20811/PI/18).
A.M.-C. thanks MICINN for a Ramon y Cajal contract and
funding (RYC-2017-22700). M.M.L. thanks Xunta de Galicia
for her postdoctoral contract (ED418B 2016/166-0).
10741−10747. (c) Lewandowski, B.; De Bo, G.; Ward, J. W.;
Papmeyer, M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.;
Heckmann, D.; Goldup, S. M.; D’Souza, D. M.; Fernandes, A. E.;
Leigh, D. A. Sequence-specific peptide synthesis by an artificial small-
molecule machine. Science 2013, 339, 189−193. (d) Blanco, V.; Leigh,
D. A.; Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 2015,
4
(
4, 5341−5370.
REFERENCES
11) (a) Tachibana, Y.; Kihara, N.; Takata, T. Asymmetric benzoin
■
(
1) Bartok
́
, M. Unexpected inversions in asymmetric reactions:
condensation catalyzed by chiral rotaxanes tethering a thiazolium salt
moiety via the cooperation of the component: Can rotaxane be an
effective reaction field? J. Am. Chem. Soc. 2004, 126, 3438−3439.
(b) Hattori, G.; Hori, T.; Miyake, Y.; Nishibayashi, Y. Design and
preparation of a chiral ligand based on a pseudorotaxane skeleton:
application to rhodium-catalyzed enantioselective hydrogenation of
enamides. J. Am. Chem. Soc. 2007, 129, 12930−12931. (c) Suzaki, Y.;
Shimada, K.; Chihara, E.; Saito, T.; Tsuchido, Y.; Osakada, K.
[3]Rotaxane-based dinuclear palladium catalysts for ring-closure
Mizoroki−Heck reaction. Org. Lett. 2011, 13, 3774−3777.
(d) Galli, M.; Lewis, J. E. M.; Goldup, S. M. A stimuli-responsive−
gold catalyst: regulation of activity and diastereoselectivity. Angew.
Chem., Int. Ed. 2015, 54, 13545−13549. (e) Marcos, V.; Stephens, A.
reactions with chiral metal complexes, chiral organocatalysts, and
heterogeneous chiral catalysts. Chem. Rev. 2010, 110, 1663−1705.
(
2) Blaser, H. U. The chiral pool as a source of enantioselective
catalysts and auxiliaries. Chem. Rev. 1992, 92, 935−952.
(
3) (a) Sibi, M. P.; Liu, M. Reversal of stereochemistry in
enantioselective transformations. Can they be planned or are they
just accidental? Curr. Org. Chem. 2001, 5, 719−755. (b) Kim, Y. H.
Dual enantioselective control in asymmetric synthesis. Acc. Chem. Res.
2
001, 34, 955−962. (c) Escorihuela, J.; Burguete, M. I.; Luis, S. V.
New advances in dual stereocontrol for asymmetric reactions. Chem.
Soc. Rev. 2013, 42, 5595−5617. (d) Beletskaya, I. P.; Najera, C.; Yus,
M. Stereodivergent catalysis. Chem. Rev. 2018, 118, 5080−5200.
D
Org. Lett. XXXX, XXX, XXX−XXX