high catalyst loading (10-30 mol %) is typically required,
which will raise the cost and limit its application in the
pharmaceutical industry. In addition, low temperature and a
large excess of ketone (normally 10-20 equiv) are also
generally required to achieve good enantioselection.7 There-
fore, the design and development of highly active organo-
catalysts aimed at overcoming these limitations have proven
to be a significant challenging task and limited success has
only been achieved quite recently.8,9
One aspect of our research is aimed at the development
of recyclable ionic liquid supported (ILS) organocatalysts
for asymmetric organic reactions, and we have recently
shown that imidazolium ILS pyrrolidine sulfonamides 1a-b
(Figure 1) serve as recyclable catalysts for Michael addition
is more electronegative than C-4 or C-5; in addition, the
imidazolium cation which serves as an electron-withdrawing
group will result in a fairly acidic N-H. The increased
acidity will result in stronger hydrogen bonds that are formed
in the transition states of these reactions. We believe that
such modifications, even though slight, will result in dramatic
enhancement of the catalytic activity and selectivity and will
avoid the need for an acidic additive. Also, this substitution
of imidazolium cation introduces more steric bulk closer to
the catalytic site and may improve the stereoselectivity.
Herein, we report the synthesis of this new and novel
organocatalyst, 1c (Scheme 1) and the results of the studies
Scheme 1
.
Synthesis of ILS (S)-Pyrrolidine Sulfonamide
Organocatalyst 1c
Figure 1. ILS (S)-pyrrolidine sulfonamide organocatalysts.
of aldehydes with nitroolefins;8a,b these ILS catalysts,
however, resulted in moderate reaction rate when cyclohex-
anone was used as the substrate (see Table 1, entries 6-8).
using 1c as a recyclable organocatalyst to promote highly
enantio- and diastereoselective Michael addition reactions
of ketones and aldehyde to nitroolefins.
Table 1. Optimization of the Reaction Conditionsa
(5) For selected reports of pyrrolidine-based organocatalysts, see: (a)
Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004,
126, 9558. (b) Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III
Org. Lett. 2004, 6, 2527. (c) Betancort, J. M.; Sakthivel, K.; Thayumanavan,
R.; Tanaka, F.; Barbas, C. F., III Synthesis 2004, 1509. (d) Alexakis, A.;
Andrey, O. Org. Lett. 2002, 4, 3611. (e) Andrey, O.; Alexakis, A.;
Tomassini, A.; Bernardinelli, G. AdV. Synth. Catal. 2004, 346, 1147. (f)
Cobb, A. J. A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem.
Commun. 2004, 1808. (g) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.;
Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84. (h) Reyes, E.;
Vicario, J. L.; Badia, D.; Carrillo, L. Org. Lett. 2006, 8, 6135. (i) Cao,
C-L.; Ye, M-C.; Sun, X-L.; Tang, Y. Org. Lett. 2006, 8, 2901. (j) Wang,
W.; Wang, J.; Li, H. Angew. Chem. Int. Ed. 2005, 44, 1369. (k) Wang, J.;
Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem.-Eur. J. 2006, 12, 4321.
(l) Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128, 9624. (m)
Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F.,
III J. Am. Chem. Soc. 2006, 128, 4966. (n) Vishnumaya; Singh, V. K. Org.
Lett. 2007, 9, 1117. (o) Ni, B.; Zhang, Q.; Headley, A. D. Tetrahedron:
Asymmetry 2007, 18, 1443. (p) Xu, D.-Q.; Wang, L.-P.; Luo, S.-P.; Wang,
Y.-F.; Zhang, S.; Xu, Z.-Y. Eur. J. Org. Chem. 2008, 1049.
yieldb eec
entry catalyst
solvent
MeOH
i-PrOH
CH3CN
neat
[BMIM][PF6]
CH3CN
i-PrOH
MeOH
time (h)
(%)
(%) syn/antid
1
1c
1c
1c
1c
1c
1a
1a
1b
19
16
17
14
17
144
120
144
95
91
81
92
<10
38
73
90
86
95/5
95/5
95/5
2
3
4
85
99/1
5e
6g
7g
f
f
88
95/5
f
f
<10
40
8g h
90
94/6
,
(6) For selected other organocatalytic Michael addition reactions, see:
(a) Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67,
8331. (b) Halland, N.; Hansen, T.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2003, 42, 4955. (c) Melchiorre, P.; Jørgensen, K. A. J. Org. Chem.
2003, 68, 4151. (e) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2004, 43, 1272. (f) Paras, N. A.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2001, 123, 4370. (g) Li, H.; Wang, Y.; Tang, L.; Deng,
L. J. Am. Chem. Soc. 2004, 126, 9906. (h) Okino, T.; Hoashi, Y.; Takemoto,
Y. J. Am. Chem. Soc. 2003, 125, 12672.
a Ketone (5 equiv) was used. b Isolated yield. c Determined by chiral
HPLC. d Determined by 1H NMR. e [BMIM][PF6] ) 1-Butyl-3-methyl
imidazolium hexafluorophosphate. f Not determined. g Catalyst (20 mol %)
was used. h Trifluoroacetic acid (5 mol %) was used.
For Michael addition reactions involving sulfonamide orga-
nocatalysts of this type, it is believed that the acidic N-H
hydrogen plays an important role in the stabilization of the
transition state via hydrogen bonding.5k,8a,b Based on this
knowledge, we have designed a new type of ILS pyrrolidine
sulfonamide organocatalyst based on subtle structural modi-
fications to catalysts 1a and 1b in order to increase the N-H
acidity. This new design is based on introducing the sulfonyl
group into the C-2 position of the imidazolium cation, which
(7) Only the diamine- and triamine-protonic acid catalysts (ref 5l using
5 equiv of ketone and ref 5m using 2 equiv of ketone) provide good ee for
a few substrates at room temperature.
(8) For examples reported recyclable organocatalysts for Michael
addition reactions using ionic liquid as support, see: (a) Ni, B.; Zhang, Q.;
Headley, A. D. Green Chem. 2007, 9, 737. (b) Zhang, Q.; Ni, B.; Headley,
A. D. Tetrahedron 2008, 64, 5091. (c) Ni, B.; Zhang, Q.; Headley, A. D.
Tetrahedron Lett. 2008, 49, 1249. (d) Wu, L.-Y.; Yan, Z.-Y.; Xie, Y.-X.;
Niu, Y.-N.; Liang, Y.-M. Tetradedron: Asymmetry 2007, 18, 2086. (e) Luo,
S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P. Angew. Chem., Int. Ed.
2006, 45, 3093.
1038
Org. Lett., Vol. 11, No. 4, 2009