3572
S. A. Johannesen et al. / Tetrahedron Letters 48 (2007) 3569–3573
a
Table 2. Pd(0)-catalyzed allylic alkylation studies using iminophosphine ligand 9
OAc
Nu
3
Pd2(η −allyl)2Cl2, 9
NuH
Ph
Ph
THF, Base
Ph
Ph
b
c
d
e
Entry
NuH
Pd/L
Time (h)
Temp. (ꢁC)
Conv. (%)
Yield (%)
ee (%) (config.)
1
2
3
4
5
6
7
8
MeCH(CO
AcNHCH(CO
AcNHCH(CO
2
Me)
2
1/2
1/2
1/2
1/1
1/2
1/2
1/1
1/2
24
72
48
24
24
24
48
48
25
25
60
25
25
25
25
25
32
0
—
—
45
—
—
—
96
96
46 (R)
—
Me)
2 2
2
Me)
2
51
20
12
19 (R)
60 (R)
85 (R)
C
C
C
6
H
6
H
6
H
5
5
5
CH
CH
CH
2
2
2
NH
NH
NH
2
2
2
f
f
21
76 (R)
Morpholine
Morpholine
100
100
85 (R)
g
99 (R)
a
b
c
d
e
f
[
1,3-Diphenyl-2-propenyl acetate]/[dimethyl malonate]/[Base]/[Pd] = 1/3/3/0.02; solvent [0.125 M].
Conversion determined by GC analysis.
Isolated pure product.
Determined by HPLC analysis (column Chiralpak AD 0.46 · 25 cm).
Determined by comparison with an authentic sample.
3 2 2 3
Reaction performed in CH CN/H O (1/1) with K CO as base.
g
20
½
aꢀD ꢁ4.5 (c 0.5, CHCl
3
).
it appears that the metal complexes prepared with ligand
are sensitive to the sterical bulk of the nucleophile.
Gratifyingly, the amine nucleophiles such as benzyl
amine and morpholine provided high ees (85% and
of Science and Technology, the University of Aarhus
and the Carlsberg Foundation. And one of us (K.G.)
thanks the French ministry MENSR for a fellowship.
9
9
2
9%, respectively) with a ligand/Pd ratio of 2:1 (Table
, entries 5 and 9). Again, the monodentate nature of
References and notes
this ligand was confirmed by the lower ees obtained with
a ligand/metal ratio of 1:1. Additionally, with morphol-
ine as the nucleophile the reaction furnished the allylic
amine in an excellent yield of 96% after a reaction time
of 48 h at 25 ꢁC. On the other hand, with benzylamine
only low conversions were observed either in solvents
such as THF or acetonitrile/water mixtures. Possibly,
either complexation of the primary amine to the metal
centre may result in deactivation of the catalyst, or the
amine may be interfering with the Pd-bound imine func-
tionality of the ligand. In any case, it is interesting to
note the high selectivity displayed by this disaccharide
ligand 9 for the various substrates tested.
1
. (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96,
95–422; (b) Williams, J. M. J. Synlett 1996, 705–710; (c)
Helmchen, G. J. Organomet. Chem. 1999, 576, 203–214;
d) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer: Tokyo, 1999; Vol. 2, p 833; (e) Trost, B. M.
Chem. Pharm. Bull. 2002, 50, 1–14; (f) Trost, B. M.;
Crawley, M. L. Chem. Rev. 2003, 103, 2921–2944; (g)
Trost, B. M. J. Org. Chem. 2004, 69, 5813–5837; (h)
Braun, M.; Meier, T. Angew. Chem., Int. Ed. 2006, 45,
3
1
5
(
6
952–6955; (i) Trost, B. M.; Machacek, M. R.; Aponick,
A. Acc. Chem. Res. 2006, 39, 747–760.
. Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am.
Chem. Soc. 1992, 114, 9327–9343.
2
In conclusion, a series of disaccharide phosphine ligands
composed of a D-glucosamine unit have been prepared
and examined in asymmetric allylic alkylation. Surpris-
ingly, a Pd-complex with an imino phosphine derivative
of this disaccharide possessing free hydroxyl groups on
the glucosamine sugar proved to be the most active cat-
alyst with respect to conversion and enantioselectivity
with a preference for unsubstituted malonate and a sec-
ondary amine such as morpholine. Further work is now
underway to investigate the importance of the reducing
sugar end of this ligand and whether it can be substi-
tuted with a simple bulky alkyl group. Additionally,
work is in the process to systematically understand
how these carbohydrate ligands exert their chiral effect.
This work will be reported in due course.
3
. (a) Von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1993, 32, 566–568; (b) Williams, J. M. J. Synlett 1996, 705–
710; (c) Helmchen, G. J. Organomet. Chem. 1999, 576,
203–214.
4
. (a) Dieguez, M.; Pamies, O.; Claver, C. Chem. Rev. 2004,
1
04, 3189–3215; (b) Dieguez, M.; Pamies, O.; Ruiz, A.;
Castillon, S.; Claver, C. Coord. Chem. Rev. 2004, 248,
165–2192.
2
5
6
. Nazarov, A. A.; Hartinger, C. G.; Arion, V. B.; Giester,
G.; Keppler, B. K. Tetrahedron 2000, 58, 8489–8492.
. Khiar, N.; Araujo, C. S.; Alvarez, E.; Fernandez, I.
Tetrahedron Lett. 2003, 44, 3401–3404.
7. (a) Hong-Wick, K.; Pregosin, P. S.; Trabesinger, G.
Organometallics 1998, 17, 3254–3264; (b) Barbaro, P.;
Currao, A.; Hermann, J.; Nesper, R.; Pregosin, P. S.;
Salzmann, R. Organometallics 1996, 15, 1879–1888.
8
9
. Glaser, B.; Kunz, H. Synlett 1998, 53–55.
. (a) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.;
Uemura, S. Chem. Commun. 1999, 415–416; (b) Yonehara,
K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. J. Org.
Chem. 1999, 64, 9374–9380; (c) Hashizume, T.; Yonehara,
K.; Ohe, K.; Uemura, S. J. Org. Chem. 2000, 65, 5197–
5201.
Acknowledgements
We are grateful for generous financial support from the
Danish Natural Science Research Council, the Ministry