Edge Article
Chemical Science
COFs by a b-ketoenamine based Michael addition–elimination
reaction under ambient synthesis conditions employing
aqueous systems. This strategy not only yields highly crystalline
and porous COFs, but also offers the advantage of a high reac-
tion rate (30 min), impressive yield (93%) and scalability
potential (5.0 g). Moreover, the metal-doped COF, JUC-521-Fe,
4 (a) S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, Angew. Chem.,
Int. Ed., 2008, 47, 8826; (b) Y. Du, H. Yang, J. M. Whiteley,
S. Wan, Y. Jin, S. H. Lee and W. Zhang, Angew. Chem., Int.
Ed., 2016, 55, 1737; (c) C. Y. Wu, Y. M. Liu, H. Liu,
C. H. Duan, Q. Y. Pan, J. Zhu, F. Hu, X. Y. Ma, T. G. Jiu,
Z. B. Li and Y. J. Zhao, J. Am. Chem. Soc., 2018, 140, 10016.
5 (a) S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane,
T. Heine and R. Banerjee, J. Am. Chem. Soc., 2012, 134,
19524; (b) M. Calik, F. Auras, L. M. Salonen, K. Bader,
I. Grill, M. Handloser, D. D. Medina, M. Dogru,
shows a high reaction rate constant of 2.8 ꢃ 10ꢁ2 minꢁ1
,
a degradation efficiency of 95% in 90 min, and reusability in the
degradation of toxic organic pollutants based on Fenton's
reaction. This research thus provides a promising synthetic
strategy for large-scale production of COFs and expands their
potential application in environmental remediation.
¨
F. Lobermann, D. Trauner, A. Hartschuh and T. Bein, J.
Am. Chem. Soc., 2014, 136, 17802; (c) Q. R. Fang,
J. H. Wang, S. Gu, R. B. Kaspar, Z. B. Zhuang, J. Zheng,
H. X. Guo, S. L. Qiu and Y. S. Yan, J. Am. Chem. Soc., 2015,
137, 8352; (d) Y. W. Peng, G. D. Xu, Z. G. Hu, Y. D. Cheng,
C. L. Chi, D. Q. Yuan, H. S. Cheng and D. Zhao, ACS Appl.
Mater. Interfaces, 2016, 8, 18505; (e) S. Wang, Q. Wang,
P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma, J. Zhou,
X. Feng and B. Wang, J. Am. Chem. Soc., 2017, 139, 4258; (f)
Q. Sun, B. Aguila, J. Perman, L. D. Earl, C. W. Abney,
Y. Cheng, H. Wei, N. Nguyen, L. Wojtas and S. Q. Ma, J.
Am. Chem. Soc., 2017, 139, 2786; (g) A. Halder, M. Ghosh,
A. Khayum, S. Bera, M. Addicoat, H. Sasmal, S. Karak,
S. Kurungot and R. Banerjee, J. Am. Chem. Soc., 2018, 140,
10941; (h) K. Jeong, S. Park, G. Y. Jung, S. H. Kim,
Y. H. Lee, S. K. Kwak and S. Y. Lee, J. Am. Chem. Soc., 2019,
141, 5880.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21571079, 21621001, 21390394,
21571076, and 21571078), the “111” project (B07016 and
B17020), and the Program for JLU Science and Technology
Innovative Research Team. V. V. and Q. F. acknowledge the
Thousand Talents program (China). V. V., Q. F. and S. Q.
acknowledge the collaboration in the framework of China-
French joint laboratory “Zeolites”.
ˆ ´
6 H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote,
R. E. Taylor, M. O'Keeffe and O. M. Yaghi, Science, 2007, 316,
268.
Notes and references
¨
7 F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock,
ˆ ´
1 (a) A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe,
M. O'Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131,
A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166; (b)
J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf,
E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park and
W. R. Dichtel, Science, 2011, 332, 228; (c) S. Y. Ding and
W. Wang, Chem. Soc. Rev., 2013, 42, 548; (d) N. Huang,
P. Wang and D. L. Jiang, Nat. Rev. Mater., 2016, 1, 16068;
4570.
8 Q. R. Fang, Z. B. Zhuang, S. Gu, R. B. Kaspar, J. Zheng,
J. H. Wang, S. L. Qiu and Y. S. Yan, Nat. Commun., 2014, 5,
4503.
9 P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int.
Ed., 2008, 47, 3450.
(e) C. S. Diercks and O. M. Yaghi, Science, 2017, 355, 10 E. Q. Jin, M. Asada, Q. Xu, S. Dalapati, M. A. Addicoat,
eaal1585; (f) H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng,
M. A. Brady, H. Xu, T. Nakamura, T. Heine, Q. H. Chen
R. Xiao, Z. Tang, D. Huang, L. Tang, C. Lai, D. Jiang,
and D. L. Jiang, Science, 2017, 357, 673.
Y. Liu, H. Yi, L. Qin, S. Ye, X. Ren and W. Tang, Chem. Soc. 11 (a) B. Zhang, M. F. Wei, H. Y. Mao, X. K. Pei, S. A. Alshmimri,
Rev., 2019, 48, 488.
2 (a) H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009,
131, 8875; (b) T. Y. Zhou, S. Q. Xu, Q. Wen, Z. F. Pang and
J. A. Reimer and O. M. Yaghi, J. Am. Chem. Soc., 2018, 140,
12715; (b) X. Y. Guan, H. Li, Y. C. Ma, M. Xue, Q. R. Fang,
Y. S. Yan, V. Valtchev and S. L. Qiu, Nat. Chem., 2019, 11, 587.
X. Zhao, J. Am. Chem. Soc., 2014, 136, 15885; (c) K. Dey, 12 M. R. Rao, Y. Fang, S. D. Feyter and D. F. Perepichka, J. Am.
M. Pal, S. Kunjattu, K. Rouy, A. Das, R. Mukherjee, Chem. Soc., 2017, 139, 2421.
U. Kharul and R. Banerjee, J. Am. Chem. Soc., 2017, 139, 13 S. Iravani, Green Chem., 2011, 13, 2638.
13083; (d) J. X. Ma, J. Li, Y. F. Chen, R. Ning, Y. F. Ao, 14 X. Y. Guan, Y. C. Ma, H. Li, Y. Yusran, M. Xue, Q. R. Fang,
J. M. Liu, J. L. Sun, D. X. Wang and Q. Q. Wang, J. Am.
Chem. Soc., 2019, 141, 3843.
Y. S. Yan, V. Valtchev and S. L. Qiu, J. Am. Chem. Soc.,
2018, 140, 4494.
3 (a) S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su 15 (a) Y. W. Peng, W. K. Wong, Z. G. Hu, Y. D. Cheng,
and W. Wang, J. Am. Chem. Soc., 2011, 133, 19816; (b) X. Han,
Q. C. Xia, J. J. Huang, Y. Liu, C. X. Tan and Y. Cui, J. Am.
Chem. Soc., 2017, 139, 8693; (c) L. H. Li, X. L. Feng,
X. H. Cui, Y. X. Ma, S. Y. Ding and W. Wang, J. Am. Chem.
Soc., 2017, 139, 6042.
D. Q. Yuan, S. A. Khan and D. Zhao, Chem. Mater., 2016,
28, 5095; (b) S. Y. Ding, X. H. Cui, J. Feng, G. X. Lu and
W. Wang, Chem. Commun., 2017, 53, 11956; (c) S. Karak,
S. Kandambeth, B. P. Biswal, H. S. Sasmal, S. Kumar,
P. Pachfule and R. Banerjee, J. Am. Chem. Soc., 2017, 139,
This journal is © The Royal Society of Chemistry 2019
Chem. Sci., 2019, 10, 10815–10820 | 10819