A. Arcadi et al. / Journal of Organometallic Chemistry 696 (2011) 87e98
97
processes are not only efficient but also they can achieve the direct
construction of complex molecules, without isolating any inter-
mediates, from readily accessible starting materials under mild
conditions and with high atom economy. A continuation of
progressive research is thus anticipated in this area.
arom, J ¼ 1.1 Hz), 7.28 (d, 2H, arom, J ¼ 8.4 Hz), 7.44e7.50 (m, 2H,
arom), 7.52 (s, 1H, arom), 7.61 (d, 2H, arom, J ¼ 8.1 Hz), 7.79e7.89
(m, 2H, arom) ppm. 13C NMR (CDCl3, 200 MHz):
d
¼ 21.4, 109.5,
117.1, 120.9, 123.1, 125.0, 126.5, 127.4, 129.1, 129.7, 134.9, 137.3, 138.7,
139.3, 142.6 ppm. ESI-MS m/z: 234 ((M þ 1)þ, (100)). Calcd for
C17H15N (233.31): C, 87.52; H, 6.48; N, 6.00. Found: C, 87.44; H, 6.43;
N, 6.08.
4. Experimental
General details. All chemicals and solvents are commercially
available and were used after distillation or treatment with drying
agents. Silica gel F254 thin-layer plates were employed for thin-
layer chromatography (TLC). Silica gel 40-63 micron/60A was
employed for flash column chromatography. Infrared spectra were
recorded on an FT-IR spectrophotometer using KBr tablets for
solids and NaCl disks for oils. Proton NMR spectra were recorded at
room temperature in CDCl3, at 200 or 500 MHz, with residual
chloroform as the internal reference (dH ¼ 7.27 ppm). 13C NMR
spectra were recorded at room temperature in CDCl3 at 50.3 or
125.75 MHz, with the central peak of chloroform as the internal
reference (dC ¼ 77.3 ppm). The APT or DEPT sequences were used
to distinguish the methine and methyl carbon signals from those
due to methylene and quaternary carbons. Data for 1H NMR are
4.4. 3-Hexyl-1-methylisoquinoline (20b)
Yellow-green oil. IR (neat):
n
¼ 2953, 2925, 2855, 1692, 1625,
1590, 1568, 1444, 1390, 747 cmꢁ1 1H NMR (CDCl3, 200 MHz):
d
¼ 0.88 (t, 3H, CH3, J ¼ 7.0), 1.35 (m, 6H, 3 CH2), 1.79 (qt, 2H, CH2,
J ¼ 7.6), 2.88 (t, 2H, CH2, J ¼ 7.6), 2.95 (s, 3H, CH3), 7.32 (s, 1H, arom),
7.50 (ddd, 1H, arom, J ¼ 8.2, 6.8, 1.5 Hz), 7.61 (ddd, 1H, arom, J ¼ 8.2,
6.8, 1.3 Hz), 7.72 (d, 1H, arom, J ¼ 7.5), 8.07 (d, 1H, arom. J ¼ 7.8 Hz)
ppm. 13C NMR (CDCl3, 200 MHz):
d
¼ 14.3, 22.6, 22.9, 29.4, 30.2,
32.0, 38.5, 116.7, 125.8, 126.1, 126.2, 127.0, 129.9, 136.9, 154.9,
158.2 ppm. ESI-MS m/z: 228 ((M þ 1)þ, (100)). Calcd for C16H21
N
(227.343): C, 84.53; H, 9.31; N, 6.16. Found: C, 84.41; H, 9.22; N, 6.19.
4.5. 3-Hexylnaphthalen-1-amine (21b)
reported as follows: s
¼
singlet, d
¼ doublet, t ¼ triplet,
q ¼ quartet, qt ¼ quintuplet, m ¼ multiplet, b ¼ broad. Coupling
constants (J) are reported as values in hertz. All 13C NMR spectra
were recorded with complete proton decoupling. Two-dimen-
sional NMR experiments (NOESY and HMBC) were used, where
appropriate, to aid in the assignment of signals in proton and
carbon spectra. The ammonia in methanol 2 M solution was
purchased from standard chemical suppliers. Microwave assisted
reactions were performed in a MILESTONE microSYNT multi-mode
labstation, using 12 mL sealed glass vessels. The internal temper-
ature was detected with an optical fibres sensor.
Yellow-orange oil. IR (neat):
n
¼ 3369, 2954, 2926, 2854, 1626,
1597, 1576, 1512, 1460, 1408, 741 cmꢁ1 1H NMR (CDCl3, 200 MHz):
d
¼ 0.90 (t, 3H, CH3, J ¼ 6.8), 1.27e1.41 (m, 6H, 3 CH2), 1.61e1.76 (m,
2H, CH2), 2.68 (t, 2H, CH2, J ¼ 7.6), 3.82 (bs, 2H, NH2), 6.66 (s, 1H,
arom.), 7.12 (s, 1H, arom.), 7.35e7.46 (m, 2H, arom.) 7.70e7.79 (m,
2H, arom.) ppm. 13C NMR (CDCl3, 200 MHz):
d
¼ 14.4, 22.9, 29.3,
31.5, 32.0, 36.5, 111.5, 118.0, 120.9, 122.6, 124.2, 126.1, 128.3, 134.9,
141.4, 142.0 ppm. ESI-MS m/z: 228 ((M þ 1)þ, (100)), 144 (40). Calcd
for C16H21N (227.343): C, 84.53; H, 9.31; N, 6.16. Found: C, 84.36; H,
9.28; N, 6.12.
4.1. General procedure for microwave-assisted/AgOTf-catalyzed
reaction of 2-alkynylacetophenones with ammonia: reaction of 1-
(2-(oct-1-ynyl)phenyl)ethanone (19b)
References
[1] (a) K.C. Nicolaou, D.J. Edmonds, P.G. Bulger, Angew. Chem. Int. Ed. 45 (2006)
7134e7186;
A stirred solution of the 1-(2-(oct-1-yn-1-yl)phenyl)ethanone
19b (0.100 g, 0.438 mmol), and AgOTf (11.3 mg, 0.044 mmol) in dry
(b) L.F. Tietze, G. Brasche, K. Gericke, Domino Reactions in Organic Synthesis.
Wiley-VCH, Weinheim, 2006;
(c) R.A. Sheldon, Pure Appl. Chem. 72 (2000) 1233e1246;
(d) B.M. Trost, Angew. Chem. Int. Ed. Engl. 34 (1995) 259e281.
[2] Y. Yamamoto, I.D. Gridnev, N.T. Patil, T. Jinab, Chem. Commun. (2009)
5075e5087.
[3] Y. Yamamoto, J. Org. Chem. 72 (2007) 7817e7831.
[4] (a) H. Yamamoto, Lewis Acids in Organic Synthesis, vols. 1, 2, Wiley-VCH,
Weinheim, Germany, 2000;
(b) S. Kobayashi, K. Manabe, Acc. Chem. Res. 35 (2002) 209e217;
(c) A.D. Dilman, S.L. Ioffe, Chem. Rev. 103 (2003) 733e772.
[5] (a) A. Arcadi, E. Rossi, Synlett (1997) 667e668;
(b) A. Arcadi, E. Rossi, Tetrahedron 54 (1998) 15253e15272.
[6] A. Arcadi, F. Marinelli, E. Pini, E. Rossi, Tetrahedron Lett. 37 (1996) 3387e3390.
[7] A. Arcadi, S. Di Giuseppe, F. Marinelli, E. Rossi, Adv. Synth. Catal. 343 (2001)
443e446.
[8] A. Arcadi, S. Di Giuseppe, F. Marinelli, E. Rossi, Tetrahedron Asymmetry 12
(2001) 2715e2720.
[9] R. Balamurugan, V. Gudla, Org. Lett. 11 (2009) 3116e3119.
[10] T. Jin, Y. Yamamoto, Org. Lett. 10 (2008) 3137e3139.
[11] (a) A. Arcadi, G. Bianchi, S. DiGiuseppe, F. Marinelli, GreenChem. 5 (2003)64e67;
(b) A. Arcadi, M. Chiarini, S. Di Giuseppe, F. Marinelli, Synlett (2003) 203e207.
[12] T.J. Harrison, J.A. Kozak, M. Corbella-Pané, G.R. Dake, J. Org. Chem. 71 (2006)
4525e4529.
[13] A. Das, S. Md Abu Sohel, R.-S. Liu, Org. Biol. Chem. 8 (2010) 960e979.
[14] (a) A. Arcadi, O.A. Attanasi, B. Guidi, E. Rossi, S. Santeusanio, Eur. J. Org. Chem.
(1999) 3117e3126;
ammonia in methanol (NH3/MeOH
2 M solution, 4.34 mL,
8.68 mmol) was heated at 120 ꢀC in a sealed tube for 30 min in
a multi-mode microwave oven (ramp time ¼ 10 min). The internal
temperature was detected with a fiber optic sensor. The solvent was
removed under reduced pressure. The crude product was purified
by flash chromatography over a silica gel column (hexane/EtOAc,
97:3) yielding progressively 3-hexyl-1-methylisoquinoline 20b
(0.060 g, 60% yield) and 3-hexylnaphthalen-1-amine 21b (0.021 g,
20% yield).
4.2. 3-p-Tolyl-1-methylisoquinoline (20a)
IR (neat):
n
¼ 3056, 2920, 1621 cmꢁ1 1H NMR (CDCl3, 200 MHz):
d
¼ 2.43 (s, 3H, CH3), 3.04 (s, 3H, CH3), 7.30 (d, 2H, arom. J ¼ 8.1 Hz),
7.05e7.69 (m, 2H, arom.), 7.86 (t, 2H, arom. J ¼ 7.0 Hz), 8.07 (t, 2H,
arom. J ¼ 8.4 Hz), 8.14 (s, 1H, arom.) ppm. 13C NMR (CDCl3,
200 MHz):
d
¼ 21.5, 22.9, 114.9, 125,9, 126.7, 126.8, 127.0, 127.8,
129.7, 130.2, 137.0, 137.3, 138.4, 150.3, 158.7 ppm. ESI-MS m/z: 234
((M þ 1)þ, (100)). Calcd for C17H15N (233.31): C, 87.52; H, 6.48; N,
6.00. Found: C, 87.45; H, 6.42; N, 6.03.
(b) A. Arcadi, O.A. Attanasi, B. Guidi, E. Rossi, S. Santeusanio, Chem. Lett. (1999)
59e60.
[15] G. Abbiati, E.M. Beccalli, A. Marchesini, E. Rossi, Synthesis (2001) 2477e2483.
[16] T. Sakamoto, A. Numata, Y. Kondo, Chem. Pharm. Bull. 48 (2000) 669e672.
[17] M. Alfonsi, M. Dell’Acqua, D. Facoetti, A. Arcadi, G. Abbiati, E. Rossi, Eur. J. Org.
Chem. (2009) 2852e2862.
[18] K.R. Roesch, R.C. Larock, J. Org. Chem. 67 (2002) 86e94.
[19] Z. Guo, M. Cai, J. Jiang, L. Yang, W. Hu, Org. Lett. 12 (2010) 652e655.
4.3. 3-p-Tolylnaphthalen-1-amine (21a)
IR (KBr):
200 MHz):
n
¼ 3425, 3024, 2915, 2855 cmꢁ1 1H NMR (CDCl3,
d
¼ 2.43 (s, 3H, CH3), 4.22 (bs, 2H, NH2), 7.05 (d, 1H,