Please do not adjust margins
RSC Advances
Page 8 of 9
DOI: 10.1039/C6RA09862B
ARTICLE
In regard to Cu with lower electronegativity modified
RSC Advances
6
7
8
C. Tu, M. Li, H. Li, Y. Chu, F. Liu, H. Nie and D. Li, RSC Adv.,
2016, , 33177-33183.
F. Han, Q. Guan, and W. Li, RSC Adv., 2015, 5, 107533-
6
MoP catalyst, the selectivity of C15 increased and the
selectivity of hexadecanol decreased (i.e., C16/C15 molar ratio
declined). The introduction of Cu to MoP catalysts facilitated
the decarbonylation and inhibited the HDO pathway. This may
partially because of the interaction between Mo and Cu
entered the crystal, the electron transferred from lower
electronegative Cu to higher higher electronegative Mo.
Meanwhile, the interaction between P and Cu not entered the
crystal made more electrons transfer from Cu to P, and lead to
the electrons transferred from Mo to P reduced. In both cases,
the electrophlicity of Mo was decreased to give rise to the
promotion the DCO pathway on Mo site36.
107539.
N. Koike, S. Hosokai, A. Takagaki, S. Nishimura, R. Kikuchi, K.
Ebitani, Y. Suzuki and S. T. Oyama, J. Catal., 2016, 333, 115-
126.
Y. Chen, C. Li, J. Zhou, S. Zhang, D. Rao, S. He, M. Wei, D. G.
Evans and X. Duan, ACS Catal., 2015, 5, 5756-5765.
9
10 C. A. Badari, F. Lónyi, E. Drotár, A. Kaszonyi and J. Valyon,
Appl. Catal. B- Environ, 2015, 164, 48-60.
11 L. Yang, X. Li, A. Wang, R. Prins, Y. Chen and X. Duan, J.
Catal., 2015, 330, 330-343.
12 H. Song, J. Gong, H. Song and F. Li, Appl. Catal. A- Gen., 2015,
505, 267-275.
13 S. T. Oyama, J. Catal., 2003, 216, 343-352.
14 J. Chen, H. Shi, L. Li and K. Li, Appl. Catal. B- Environ, 2014,
144, 870-884.
4. Conclusions
15 S. J. Sawhill, D. C. Phillips and M. E. Bussell, J. Catal., 2003,
215, 208-219.
The electronegativity modification method for enhancing
hydrogenation activity of catalysts was further studied in this
paper. The XRD and EXAFS results revealed that the W
occupied the position of Mo and Ni on the premise of
maintaining the original crystal structures. The interaction
between W and Mo (or Ni) made the electrons around the Mo
(or Ni) atom transfer to the W atom, which was accounted by
16 P. Bui, J. A. Cecilia, S. T. Oyama, A. Takagaki, A. Infantes-
Molina, H. Zhao, D. Li, E. Rodríguez-Castellón and A. Jiménez
López, J. Catal., 2012, 294, 184-198.
17 J. Bai, X. Li, A. Wang, R. Prins and Y. Wang, J. Catal., 2012,
287, 161-169.
18 T. Wada, K. K. Bando, T. Miyamoto, S. Takakusagi, S. T.
Oyama and K. Asakura, J. Synchrotron Radiat., 2012, 19, 205-
209.
the greater electronegativity of W. The activity evaluations 19 R. Li, Q. Guan, R. Wei, S. Yang, Z. Shu, Y. Dong, J. Chen and
W. Li, J. Phys. Chem. C, 2015, 119, 2557-2565.
20 S. Ted Oyama, H. Zhao, H. J. Freund, K. Asakura, R.
Włodarczyk and M. Sierka, J. Catal., 2012, 285, 1-5.
21 V. Teixeira da Silvaa, L. A. Sousaa, R. M. Amorimb, L. Andrinic,
S.J.A. Figueroad, F. G. Requejoc, F. C. Vicentinifa, J. Catal.,
2011, 279, 88-102.
22 I. I. Abu and K. J. Smith, J. Catal., 2006, 241, 356-366.
23 A. W. Burns, A. F. Gaudette and M. E. Bussell, J. Catal., 2008,
260, 262-269.
gave the results that the TOF value of W-modified catalyst
(Mo8WP9) was higher than that of the original catalyst (MoP).
Meanwhile, the C16/C15 ratio on W-modified catalyst
(Mo8WP9) was increased, which represented the enhancement
of the selectivity of HDO route. A similar TOF and C16/C15
ratio changing trends were observed between Ni38W2P20
catalyst and Ni2P catalyst. However, both the TOF value and
C16/C15 ratio of the Cu-modified catalyst (Mo8CuP9) were
lower than those of MoP. It turned out that the
hydroprocessing performance of the catalyst could be
controlled by the addition of modifiers with higher or lower
electronegativities. This finding may give valuable information
for designing more effective hydrogenation catalysts.
24 V. Zuzaniuk, R. Prins, J. Catal., 2003, 219, 85-89.
25 Q. Guan, F. Wan, F. Han, Z. Liu and W. Li, Catal. Today, 2016,
259,467-473.
26 M. Newville, J. Synchrotron Rad., 2001, 8, 322-324.
27 K. Li, R. Wang and J. Chen, Energy & Fuels, 2011, 25, 854-863.
28 S. T. Oyama, P. Clark, V. L. S. T. da Silva, E. J. Lede and F. G.
Requejo, J. Phys. Chem. B, 2001, 105, 4961-4966.
29 S. T. Oyama, P. Clark, X. Wang, T. Shido, Y. Iwasawa, S.
Hayashi, J. M. Ramallo-López and F. G. Requejo, J. Phys.
Chem. B, 2002, 106, 1913-1920.
30 Y.-K. Lee and S. T. Oyama, J. Catal., 2006, 239, 376-389.
31 G. N. Yun and Y. K. Lee, Appl. Catal. B- Environ, 2014, 150-
151, 647-655.
32 N. Chen, Y. Ren and E. W. Qian, J. Catal., 2016, 334, 79-88.
33 R. G. Kukushkin, O. A. Bulavchenko, V. V. Kaichev and V. A.
Yakovlev, Appl. Catal. B- Environ, 2015, 163, 531-538.
Acknowledgements
This work was financially supported by the NSFC
(21376123, U1403293), MOE (IRT-13R30 and 113016A), and
the Research Fund for 111 Project (B12015).
34 F. Han, Q. Guan and W. Li, RSC Adv., 2015, 5, 107533-107539.
35 V. M. L. Whiffen and K. J. Smith, Energy & Fuels, 2010, 24,
Notes and references
1
2
3
R. Kuwano, R. Ikeda and K. Hirasada, Chem. Commun., 2015,
51, 7558-7561.
S. Liu, Q. Zhu, Q. Guan, L. He and W. Li, Bioresour. Technol.,
2015, 183, 93-100.
P. A. Nikulshin, P. P. Minaev, A. V. Mozhaev, K. I. Maslakov,
M. S. Kulikova and A. A. Pimerzin, Appl. Catal. B- Environ.,
2015, 176-177, 374-384.
4728-4737.
36 J. Chen, Y. Yang, H. Shi, M. Li, Y. Chu, Z. Pan and X. Yu, Fuel,
2014, 129, 1-10.
4
5
X. Hu, S. Kadarwati, Y. Song and C. Li, RSC Adv., 2016, 6,
4647-4656.
A. K. Rathi, M. B. Gawande, V. Ranc, J. Pechousek, M. Petr, K.
Cepe, R. S. Varma and R. Zboril, Catal. Sci. Technol., 2016, 6,
152-160.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins