Page 17 of 18
Journal of the American Chemical Society
(
23) (a) Jing, Y.; Chen, X.; Yang, X.; Organometallics 2015, 34,
Muckerman,J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115,
12936 – 12973.
(40) CO hydrogenation: (a) Filonenko, G. A.; van Putten R.;
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
5716 – 5722; (b) Zhang, G.; Vasudevan, K. V.; Scott, B. L.; Hanson,
S. K. J. Am. Chem. Soc. 2013, 135, 8668 – 8681; (c) Zhang, G.; Hanꢀ
son, S. K. Chem. Commun. 2013, 49, 10151 – 10153; (d) Xu, R.;
Chakraborty, S.; Yuan, H.; Jones, W. D. ACS Catal. 2015, 5,
350−6354; (e) Zhang, G.; Yin, Z.; Tan J. RSC Adv. 2016, 6, 22419 –
2423.
2
Schulpen E. N.; Hensen E. J. M.; Pidko E. A. ChemCatChem 2014, 6,
1526 – 1530; (b) Filonenko, G. A.; Conley, M. P.; Coperet, C.; Lutz,
M.; Hensen, E. J. M.; Pidko, E. A. ACS Catal. 2013, 3, 2522 – 2526;
(c) Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 3, 2412 – 2416; (d)
Hull, J. F.; Himeda, Y.; Wang, W.ꢀH.; Hashiguchi, B.; Periana, R.;
Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383ꢀ
388; (e) Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari,
N. J. Am. Chem. Soc. 2011, 133, 9274 – 9277; (f) Langer, R.; Diskinꢀ
Posner, Y.; Leitus, G.; Shimon, L. J. W.; BenꢀDavid, Y.; Milstein, D.
Angew. Chem. Int. Ed. 2011, 50, 9948 – 9952 (g) Yamashita, M.;
Nozaki, K.; J. Am. Chem. Soc. 2009, 131, 14168 – 14169; HCOOH
dehydrogenation: (h) Bielinski E. A.; Lagaditis P. O.; Zhang Y.;
Mercado B. Q.; Würtele C.; Bernskoetter W. H.; Hazari N.; Schneider
S. J. Am. Chem. Soc. 2014, 136, 10234 – 10237; (i) Zell T.; Butschke
B.; BenꢀDavid Y.; Milstein D. Chem. Eur. J. 2013, 19, 8068 – 8072;
(l) Tanaka R.; Yamashita M.; Chung L. W.; Morokuma K.; Nozaki
K.; Organometallics 2011, 30, 6742 – 6750.
6
2
(24) Vasudevan, K. V.; Scott, B. L.; Hanson S. K. Eur. J. Inorg.
Chem. 2012, 4898 – 4906.
25) GómezꢀGallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857
4963.
26) Reactant molecules, methanol and water, can effectively be
(
–
(
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
removed from the rate equation. The catalyst and base concentration
during the steady state period are also constant, making the kinetics
effectively pseudo zero order, as exemplified by a constant rate of gas
evolution in the shortꢀtoꢀmedium term
(
27) (a) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, J. Am.
Chem. Soc. 2003, 125, 13490ꢀ13503; (b) Rautenstrauch, V.; Hoangꢀ
Cong, X.; Churlaud, R.; AbdurꢀRashid, K.; Morris, R. H. Chem. Eur.
J. 2003, 9, 4954 – 4967; (c) Hamilton, R. J.; Bergens, S. H. J. Am.
Chem. Soc. 2006, 128, 13700 – 13701; (d) Barattta, W.; Siega, K.;
Rigo, P. Chem. Eur. J. 2007, 13, 7479 – 7486; (e) Baratta, W.; Baldꢀ
ino, S.; Calhorda, M. J.; Costa, P. J.; Esposito, G.; Herdtweck, E.;
Magnolia S.; Mealli C.; Messaoudi A.; Mason S. A.; Veiros L. F.
Chem. Eur. J. 2014, 20, 13603 – 13617.
(41) Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48 – 76.
(42) (a) Crabtree, R. H. Chem. Rev. 2016, 116, 8750 – 8769; (b)
AbdurꢀRashid K., Clapham S. E., Hadzovic A. Harvey J. N., Lough
A. J., Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104 – 15118; (c)
Field, L. D., Hambley, T. W., Yau, B. C. K. Inorg. Chem. 1994, 33,
2009 – 2017.
(28) The solid state structure of antiꢀ1a has been recently reported
Zhang, L.; Nguyen, D. H.; Raffa, G.; Trivelli, X.; Capet, F.; Desset,
S.; Paul, S.; Dumeignil, F.; Gauvin, R. M. ChemSusChem 2016, 9,
(43) (a) Pitman, C. L.; Brereton, K. R.; Miller, A. J. M. J. Am.
Chem. Soc. 2016, 138, 2252 – 2260; (b) Bullock, R. M.; Appel, A.
M.; Helm, M. L. Chem. Commun. 2014, 50, 3125 – 3143; (c) Jacobꢀ
sen, H.; Berke, H., Recent Advances in Hydride Chemistry Page 89 –
116, Peruzzini, M.; Poli, R., Eds. Elsevier, Amsterdam 2001.
1
413 – 1423.
29) Despite exposure of the solid to high vacuum for a prolonged
(
1
time, the H NMR spectrum of 2 often contained a “tꢀBu” peak from
tꢀBuOH. A strong hydrogen bond between the alcohol, which is too
bulky to add across the RuꢀN amido bond, and 2 may explain these
observations. See Prokopchuk, E. D.; Tsui, B. T. H.; Lough; A. J.,
Morris R. H. Chem. Eur. J. 2014, 20, 16960 – 16968.
1
31
(44) Decoupling from phosphorus in the H{ P} NMR spectrum
resolved the multiplet into two wellꢀresolved doublets, with only the
2
residual JHꢀH coupling remaining for each hydride.
(45) (a) Belkova, N. V.; Epstein, L. M.; Shubina, E. S. Eur. J.
Inorg. Chem. 2010, 3555ꢀ3565; (b) Bakhmutov, V. I. Eur. J. Inorg.
Chem. 2005, 245 – 255; (c) Custelcean, R.; Jackson, J. E. Chem. Rev.
2001, 201, 1963 – 1980.
(46) Friedrich, A.; Drees, M.; auf der Günne, J. S.; Schneider, S. J.
Am. Chem. Soc. 2009, 131, 17552 – 17553.
(
3
30) A related amido complex, bearing a PMe in place of CO has
been reported by Schneider that shows similar structural features:
Friedrich, A.; Drees, M.; Käss, M.; Herdtweck, E.; Schneider, S. In-
org. Chem. 2010, 49, 5482 – 5494.
(
31) Jordan, R. B. Reaction Mechanisms of Inorganic and Organoꢀ
metallic Systems 2007, 3rd Ed., Oxford University Press.
32) The remaining 10% of the total Ru content is due to minor
(47) Käss, M.; Friedrich, A.; Schneider, S. Angew. Chem. Int. Ed.
2009, 48, 905 – 907.
(
1
ꢀ
ꢀ
monohydride species, among which two were more abundant ( H
NMR (THFꢀd
78.6 (s); H NMR (THFꢀd ): δ ꢀ 18.58 (t, JHP = 17.5 Hz) and P{ H}
NMR: δ = 76.9 (s)).
(
(48) Due to fast equilibration, the HCO /CO anions gave rise to a
3 3
31
1
13
): δ ꢀ 18.09 (t, JHP = 17.8 Hz) and P{ H} NMR: δ =
single C NMR peak, the chemical shift of which depends on their
relative concentration and therefore on the pH. See: (a) Moret, S.;
Dyson, P. J.; Laurenczy, G. Dalton Trans., 2013, 42, 4353 – 4356; (b)
Mani, F.; Peruzzini, M.; Stoppioni, P. Green Chem. 2006, 8, 995 –
8
1
31
1
8
33) (a) Buckingham, A. D.; Stephens, P. J. J. Chem. Soc. 1964,
1
000.
49) (a) Dub, P. A.; Henson, N. J.; Martin, R. L.; Gordon, J. C. J.
2
747 – 2759; (b) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord.
Chem. Rev. 1973, 10, 335 – 422.
34) (a) Koike, T.; Ikariya, T. Organometallics 2005, 24, 724 – 730;
b) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 128,
(
Am. Chem. Soc. 2014, 136, 3505 – 3521; (b) Hartmann, R.; Chen, P.
Angew. Chem. Int. Ed. 2001, 40, 3581 – 3585.
(
(
(
50) John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Berꢀ
gens S. H. J. Am. Chem. Soc. 2013, 135, 8578 – 8584.
51) The proton affinity (PA) of each complex was calculated and
11979 – 11987; (c) Takebayashi, S.; Dabral, N.; Miskolzie, M.;
Bergens S. H. J. Am. Chem. Soc. 2011, 128, 9666 – 9669.
(
(
35) (a) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163 –
188; (b) Fulton, J. R.; Holland, A. W.; Fox, D. J.; Bergman, R. G.
Acc. Chem. Res. 2002, 35, 44 – 56.
36) Traces of protic solvent must provide the required proton for
the formation of 3.
37) The molecular structure of a similar Ru carbonate complex
compared to a calibration curve that was populated with known pK
and calculated PAs.
a
s
1
(52) (a) Kapoor, S.; Barnabas, F. A.; Sauer Jr., M. C.; Meisel, D.;
Jonah, C. D. J. Phys. Chem., 1995, 99, 6857 – 6863; (b) Ashby, E. C.;
Doctorovich, F.; Liotta, C. L.; Neumann, H. M.; Barefield, E. K.;
Konda, A.; Zhang, K.; Hurley J. J. Am. Chem. Soc. 1993, 115, 1171 –
(
(
bearing the diphenyl substituted PNP ligand has been reported. See
Ref. 21b.
(
Morris, R. H. Dalton Trans. 2013, 42, 10214ꢀ10220; (b) Kohl, S. W.;
Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.;
BenꢀDavid, Y.; Iron, M. A.; Milstein, D. Science 2009, 324, 74 – 77.
1
173.
53) Besora, M.; Lledós, A.; Maseras, F. Chem. Soc. Rev. 2009, 38,
(
38) For example: (a) Procopchuk, D. E.; Collado, A.; Lough, A. J.;
957 – 966.
(54) Examples of hemilability at the side donor sites of pincer ligꢀ
ands: (a) Canovese, L.; Visentin, F.; Chessa, G.; Uguagliati, P.; Santo,
C.; Bandoli, G.; Maini, L. Organometallics 2003, 22, 3230 – 3238;
(
39) (a) Grasemann, M.; Laurenczy, G. Energy Environ. Sci. 2012,
, 8171 – 8181; (b) Beller, M.; Bornscheuer, U. T. Angew. Chem. Int.
Ed. 2014, 53, 4527 – 4528; (c) Wang, W.ꢀH.;. Himeda, Y.;
(
b) Bassetti, M.; Capone, A.; Salamone, M. Organometallics 2004,
5
2
3, 247 – 252; (c) Zhang, J.; Leitus, G.; BenꢀDavid, Y.; Milstein, D.
16
ACS Paragon Plus Environment