SHOU-YI KUO, CHUNG-TING LI, AND WEN-FENG HSIEH
PHYSICAL REVIEW B 69, 184104 ͑2004͒
IV. CONCLUSION
observed. By comparing the line shape of A1(1TO) mode
among PST, PBT, and PCT, we have concluded that the an-
harmonicity will become more conspicuous due to the larger
In summary, the phase transitions of PbxCa1ϪxTiO3
samples prepared by sol-gel method have been investigated
from XRD and Raman spectra. From the results of both
XRD and Raman measurements, it indicates that there exist
two obvious phase transitions. The first one occurring at x
ϳ0.65 corresponds to the tetragonal-to-cubic phase. The sec-
ond occurs near xϭ0.35 was attributed to the orthorhombic-
to-cubic phase. Unlike the similar SrxCa1ϪxTiO3 system, no
intermediate tetragonal phase was found between orthorhom-
bic and cubic phases. The absence of the intermediate phase
might be mostly attributed to the very restricted region in the
PCT system. From the Raman results of PbxCa1ϪxTiO3, the
consequences of the change of the broad A1(1TO) feature
with decreasing x has been related to the softening and an-
harmonic effect. Moreover, diverse behavior of the anharmo-
nicity of the A1(1TO) mode in PCT, PST, and PBT were
and ͉͉ in PCT and PBT systems. In addition, the phenom-
enon of LO-TO splitting similar to those found in PST sys-
tem was investigated as well. The observed decreasing of
LO-TO splitting as lower Pb concentration from 1 to 0.7 has
been interpreted that the substitution of the A cation, Pb, by
Ca not only decreases O 2p-Pb 6p but also O 2p-Ti 3d
hybridization. We do hope the present study will encourage
theoretical calculation to have further insight into lattice dy-
namics on ABO3 perovskites.
ACKNOWLEDGMENTS
The work was supported by Grant No. NSC 92-2112-
M009-037 from the National Science Council, Taiwan.
*
Electronic address: wfhsieh@mail.nctu.edu.tw
23 C.M. Foster, M. Grimsditch, Z. Li, and V.G. Karpov, Phys. Rev.
Lett. 71, 1258 ͑1993͒.
1 E. Cockayne and B.P. Burton, Phys. Rev. B 62, 3735 ͑2000͒.
2 R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828
͑1994͒.
24 J. Frantti, V. Lantto, S. Nishio, and M. Kakihana, Phys. Rev. B
59, 12 ͑1999͒.
3 W. Zhong, R.D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett.
72, 3618 ͑1994͒.
4 Ph. Ghosez, E. Cockayne, U.V. Waghmare, and K.M. Rabe, Phys.
Rev. B 60, 836 ͑1999͒.
5 D. Vanderbilt and W. Zhong, Ferroelectrics 206, 181 ͑1998͒.
6 H.F. Kay and P.C. Bailey, Acta Crystallogr. 10, 219 ͑1957͒.
7 R. Ranjan and D. Pandey, J. Phys.: Condens. Matter 11, 2247
͑1999͒.
8 R. Ranjan and D. Pandey, J. Phys.: Condens. Matter 13, 4251
͑2001͒.
25 J. Frantti and V. Lantto, Phys. Rev. B 54, 12 139 ͑1996͒.
26 S.Y. Kuo, W.Y. Liao, and W.F. Hsieh, Phys. Rev. B 64, 224103
͑2001͒.
27 C.J. Ball, B.D. Begg, D.J. Cookson, G.J. Thorogood, and E.R.
Vance, J. Solid State Chem. 139, 238 ͑1998͒.
28 R. Ranjan, D. Pandey, V. Siruguri, P.S.R. Krishna, and S.K.
Paranjpe, J. Phys.: Condens. Matter 11, 2233 ͑1999͒.
29 S. Qin, A.I. Becerro, F. Seifert, J. Gottsmann, and J. Jiang, J.
Mater. Chem. 10, 1609 ͑2000͒.
30 U. Balachandran and N.G. Eror, Solid State Commun. 44, 815
͑1982͒.
9 H.F. Naylor and O.A. Cook, J. Am. Chem. Soc. 68, 1003 ͑1946͒.
10 T. Vogt and W.W. Schmahl, Europhys. Lett. 24, 281 ͑1993͒.
11 S.A. Redfern, J. Phys.: Condens. Matter 8, 8267 ͑1996͒.
12 T. Matsui, H. Shigematsu, Y. Arita, Y. Hanajiri, N. Nakamitsu,
and T. Nagasaki, J. Nucl. Mater. 247, 72 ͑1997͒.
13 B.J. Kennedy, C.J. Howard, and B.C. Chakoumakos, J. Phys.:
Condens. Matter 11, 1479 ͑1999͒.
31 T. Hirata, K. Ishioka, and M. Kitajima, J. Solid State Chem. 94,
353 ͑1996͒.
32 P. Gillet, F. Guyot, G.D. Price, B. Tournerie, and A.L. Cleach,
Phys. Chem. Miner. 20, 159 ͑1993͒.
33 C.H. Perry, B.N. Khanna, and G. Rupprecht, Phys. Rev. 135,
A408 ͑1964͒.
14 C.J. Ball, G.J. Thorogood, and E.R. Vance, J. Nucl. Mater. 190,
298 ͑1992͒.
34 U. Balachandran and N.G. Eror, Solid State Commun. 44, 815
͑1982͒.
15 X. Liu and R.C. Liebermann, Phys. Chem. Miner. 20, 171 ͑1993͒.
16 A.L. Kholkin, M.L. Calzada, P. Ramos, J. Mendiola, and N. Set-
ter, Appl. Phys. Lett. 69, 3602 ͑1996͒.
35 P. McMillan and N. Ross, Phys. Chem. Miner. 16, 21 ͑1988͒.
36 P. Gillet, G. Fiquet, and I. Daniel, Geophys. Res. Lett. 20, 1931
͑1993͒.
17 A. Seifert, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 2409
͑1998͒.
37 J.C. Jan, K. Kumar, J.W. Chiou, H.M. Tsai, H.L. Shih, H.C.
Hsueh, S.C. Ray, K. Asokan, W.F. Pong, M.-H. Tsai, S.Y. Kuo,
and W.F. Hsieh, Appl. Phys. Lett. 83, 3311 ͑2003͒.
38 A.F. Devonshire, Philos. Mag. 40, 1040 ͑1949͒.
39 S.M. Cho, H.M. Jang, and T.Y. Kim, Phys. Rev. B 64, 014103
͑2001͒.
18 G. King, E. Goo, T. Yamamoto, and K. Okazaki, J. Am. Ceram.
Soc. 71, 454 ͑1988͒.
19 G. King and E. Goo, J. Am. Ceram. Soc. 73, 1534 ͑1990͒.
20 R.E. Cohen, Nature ͑London͒ 358, 136 ͑1992͒.
21 S.Y. Kuo, C.T. Li, and W.F. Hsieh, Appl. Phys. Lett. 81, 3019
͑2002͒.
40 G.P. Srivastava, The Physics of Phonons ͑Adam Hilger, Bristol,
1990͒, Chap. 5.
41 T. Hidaka, J. Phys. Soc. Jpn. 61, 1054 ͑1992͒.
22 C.M. Foster, Z. Li, M. Grimsditch, S.-K. Chan, and D.J. Lam,
Phys. Rev. B 48, 10 160 ͑1993͒.
184104-6