298
logσ [S/cm]
MURASHKINA et al.
CONCLUSIONS
We refined the lattice parameters of the
CaTi0.9M0.1O3 – δ (M = Fe, Cu, Al) compounds (orthor-
hombic perovskite structure, sp. gr. Pnma).
The electrical conductivity of CaTi0.9M0.1O3 – δ was
measured in wide ranges of oxygen partial pressures
and temperatures. The Fe-, Cu-, andAl-doped materials
(a)
–1.0
–1.2
–1.4
–1.6
–1.8
–2.0
–2.2
ëaTi0.9Fe0.1O3 – δ
ëaTi0.9Cu0.1O3 – δ
ëaTi0.9Al0.1O3 – δ
1170 ä
are mixed conductors, -type at high pO and n-type at
2
low pO . At intermediate oxygen partial pressures, the
2
conductivity varies little. The acceptor dopants studied
are shown to raise the conductivity of calcium titanate
in the order Al < Cu < Fe. The thermal expansion of the
three materials was measured.
–15
–10
–5
0
5
–0.4
–0.6
–0.8
–1.0
–1.2
–1.4
–1.6
–1.8
–2.0
REFERENCES
(b)
1. Demin, A.K., Solid Oxide Fuel Cells and Outlook for
Electrochemical Power Sources, Vestn. Ural. Otd. Ross.
Akad. Nauk, 2005, no. 4 (14), pp. 9–17.
2. Demin, A.K. and Dunyushkina, L.A., Transfer Phenom-
ena in an Electrochemical Reactor Based on Mixed
Oxide Conductor, Solid State Ionics, 2000, vol. 135,
pp. 749–755.
3. Marion, S., Becerro, A.I., and Norby, T., Ionic and Elec-
tronic Conductivity in CaTi1 – xFexO3 – δ (x = 0.1–0.3),
Ionics, 1999, vol. 5, pp. 385–392.
4. Dunyushkina, L.A., Demina, A.K., and Zhuravlev, B.V.,
Electrical Conductivity of Iron-Doped Calcium Titanate,
Solid State Ionics, 1999, vol. 116, pp. 85–88.
1270 ä
–10
–5
0
5
logpO2 [Pa]
5. Murashkina, A.A. and Demina, A.N., Doping of Cal-
cium Titanate with Chromium and Indium, Neorg.
Mater., 2005, vol. 41, no. 4, pp. 475–478 [Inorg. Mater.
(Engl. Transl.), vol. 41, no. 4, pp. 402–405].
Fig. 2. Log–log plots of conductivity vs. oxygen partial
pressure for CaTi
M
O
.
0.9 0.1 3 – δ
6. Dunyushkina, L.A., Demin, A.K., and Juravlev, B.V.,
Oxygen Permeability of CaTi0.8Fe0.2O3 – δ, Ionics, 2003,
vol. 9, pp. 1–4.
σ ∼ n = constp–O1/6
.
(6)
2
The dopants raise the conductivity of CaTiO3 in the
order Al < Cu < Fe.
8. Rietveld, H.M., A Profile Refinement Method for
Nuclear and Magnetic Structures, J. Appl. Crystallogr.,
1969, vol. 2, no. 2, pp. 65–71.
The thermal expansion data for our samples in dif-
ferent temperature ranges are presented in Table 2.
9. McCusker, L.B., Von Dreele, R.B., Cox, D.E., et al.,
Rietveld Refinement Guidelines, J. Appl. Crystallogr.,
1999, vol. 32, pp. 36–50.
Table 2. Thermal expansion of CaTi0.9M0.1O3 – δ
11. Rodriges-Carvajal, J., The Programs for Rietveld
Refinement, Phys. B (Amsterdam, Neth.), 1993,
vol. 192, p. 55.
M
∆T, K
α × 10–6, K–1 ∆α × 10–7, K–1
12. Shannon, R.D. and Prewitt, C.T., Effective Ionic Radii in
Oxides and Fluorides, Acta Crystallogr., Sect. B: Struct.
Crystallogr. Cryst. Chem., 1969, vol. 25, no. 5, pp. 925–
946.
13. Bak, T., Nowotny, J., Sorrel, C.C., et al., Charge Trans-
port in CaTiO3: 1. Electrical Conductivity, J. Mater. Sci.,
2004, vol. 15, pp. 635–644.
14. Balachandran, U., Odekirk, B., and Eror, N.G., Electri-
cal Conductivity in Calcium Titanate, J. Solid State
Chem., 1982, vol. 41, pp. 185–194.
Fe
290–770
770–1270
290–570
570–800
800–1270
290–1270
14.5
10.6
4.8
0.83
3.3
Al
6.8
10.6
8.5
2.2
2.9
Cu
10.01
0.95
INORGANIC MATERIALS Vol. 44 No. 3 2008