Y. Xie et al. / Journal of Catalysis 265 (2009) 131–140
139
A as shown in Table 2 and Supplementary Table 1S, which is a
References
product often preferred in industry; and (3) silanol groups make
it unnecessary to introduce an additional auxiliary acidic group
as done in Refs. [3–5]. Having the surface silanol groups not only
produces more effective acidic sites for the aldol reaction but also
makes the synthesis less costly and safer.
[1] T. Nakayama, H. Suzuki, T. Nishino, J. Mol. Catal. B 9 (2003) 117–132.
[2] T. Hoffmann, G. Zhong, B. List, D. Shabat, J. Anderson, S. Gramatikova, R.A.
Lerner, C.F. Barbas III, J. Am. Chem. Soc. 120 (1998) 2768–2779.
[3] (a) J.D. Bass, A. Katz, Chem. Mater. 18 (2006) 1611–1620;
(b) J. Bass, S.A. Anderson, A. Katz, Angewandte Chemie. Int. Ed. 42 (2003)
5219–5222;
The aldol reaction that we chose to test the catalytic perfor-
mance here has not only allowed us to investigate cooperative cat-
alytic properties of our catalysts further but also is one of the most
important C–C bond-forming reactions in organic synthesis. Thus,
the systematic investigation of cooperative solid catalysts contain-
ing acidic and basic groups for aldol reaction provided us with
valuable insight about cooperative catalysis and may facilitate
the development of efficient heterogeneous catalysts mimicking
biocatalysts [1,2,52] for other reactions. Furthermore, the investi-
gation of the properties of the catalysts in aldol reaction allowed
us to demonstrate the versatility of amine-functionalized meso-
porous materials that are synthesized by solvent-assisted grafting
[46,52,55] to beyond the Henry reaction.
(c) J.D. Bass, A. Solovyov, A.J. Pascall, A. Katz, J. Am. Chem. Soc. 128 (2006)
3737–3747;
(d) J.M. Notestein, A. Katz, Chem. Eur. J. 12 (2006) 3854–3965.
[4] S. Huh, H.T. Chen, J.W. Wiench, M. Pruski, V.S.-Y. Lin, Angew. Chem. Int. Ed. 44
(2005) 1826–1830.
[5] (a) M.E. Davis, A. Katz, W.R. Ahmad, Chem. Mater. 8 (1996) 1820–1839;
(b) R.K. Zeidan, S.J. Hwang, M.E. Davis, Angew. Chem. Int. Ed. 45 (2006) 6332–
6335;
(c) R.K. Zeidan, M.E. Davis, J. Catal. 247 (2007) 379–382;
(d) M.J. Climent, A. Corma, V. Fornés, R. Guil-Lopez, S. Iborra, Adv. Syn. Catal.
344 (2002) 1090–1096;
(e) K. Motokura, M. Tada, Y. Iwasawa, J. Am. Chem. Soc. 129 (2007) 9540–
9541.
[6] E.L. Margelefsky, R.K. Zeidan, V. Dufaud, M.E. Davis, J. Am. Chem. Soc. 129
(2007) 13691–13697.
[7] Y. Chi, S.T. Scroggins, J.M.J. Fréchet, J. Am. Chem. Soc. 130 (2008) 6322–6323.
[8] B.M. Choudary, M.L. Kantam, P. Sreekanth, T. Bandopadhyay, F. Figueras, A.
Tuel, J. Mol. Catal. A 142 (1999) 361–365.
[9] Y. Kubota, Y. Nishizaki, H. Ikeya, M. Saeki, T. Hida, S. Kawazu, M. Yoshida, H.
Fujii, Y. Sugi, Microp. Mesop. Mater. 70 (2004) 135–149.
[10] K.-i. Shimizu, E. Hayashi, T. Inokuchi, T. Kodama, H. Hagiwara, Y. Kitayama,
Tetrahedron Lett. 43 (2002) 9073–9075.
[11] X. Wang, K.S.K. Lin, J.C.C. Chan, S. Cheng, J. Phys. Chem. B 109 (2005) 1763–
1769.
[12] M.J. Climent, A. Corma, V. Fornes, A. Frau, R. GuilLopez, S. Iborra, J. Primo, J.
Catal. 163 (1996) 392–398.
[13] K. Narasimharao, M. Hartmann, H.H. Thiel, S. Ernst, Microp. Mesop. Mater. 90
(2006) 377–383.
[14] Y. Shi, Y. Wan, R. Zhang, D. Zhao, Adv. Funct. Mater. 18 (2008) 2436–2443.
[15] L. Regli, S. Bordiga, C. Busco, C. Prestipino, P. Ugliengo, A. Zecchina, C. Lamberti,
J. Am. Chem. Soc. 129 (2007) 12131–12140.
[16] H. Hattori, Chem. Rev. 95 (1995) 537–558.
[17] F. Munoz, D. Benne, L. Pascual, J. Rocherulle, R. Marchand, C. Ruessel, A. Duran,
J. Non-Cryst. Solids 345–346 (2004) 647–652.
[18] C.R. Bickmore, R.M. Laine, J. Am. Ceram. Soc. 79 (1996) 2865–2877.
[19] L. Zhu, L. Chen, T. Huang, Y. Qian, Y. Gu, J. Am. Ceram. Soc. 90 (2007) 1243–
1245.
[20] S.-Y. Shan, J.-F. Yang, J.-Q. Gao, W.-H. Zhang, Z.-H. Jin, R. Janssen, T. Ohji, J. Am.
Ceram. Soc. 88 (2005) 2594–2596.
[21] W. Orellana, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 70 (2004) 125206/1–125206/
7.
[22] M.J. Climent, A. Corma, V. Fornes, A. Frau, R. Guil-Lopez, S. Iborra, J. Primo, J.
Catal. 163 (1996) 392–398.
[23] S. Ernst, M. Hartmann, S. Sauerbeck, T. Bongers, Appl. Catal. A 200 (2000) 117–
123.
[24] M.A. Centeno, M. Debois, P. Grange, J. Catal. 192 (2000) 296–306.
[25] J.J. Benitez, A. Diaz, Y. Laurent, J.A. Odriozola, Appl. Catal. A 176 (1999) 177–
187.
[26] T. Blasco, A. Corma, L. Fernandez, V. Fornes, R. Guil-Lopez, Phys. Chem. Chem.
Phys. 1 (1999) 4493–4499.
[27] X. Guan, N. Li, G. Wu, J. Chen, F. Zhang, N. Guan, J. Mol. Catal. A 248 (2006)
220–225.
5. Conclusion
A highly efficient solid-base catalyst for the aldol condensation
reaction was synthesized by placing site-isolated organoamine
groups along with many residual silanols on mesoporous materi-
als. The synthesis was carried out by grafting aminoroganosilanes
in a polar-protic solvent. The mesoporous catalysts were character-
ized by various methods. The surface silanol groups, which were
proved to be more in samples grafted in isopropanol compared
to the corresponding samples grafted in a non-polar solvent, tolu-
ene, were found to be responsible for the enhanced catalytic activ-
ity in aldol reaction. Control experiments were carried out to
investigate the importance of silanol groups for the cooperative
catalytic activity in base-catalyzed aldol reaction. By systemati-
cally investigating a series of organoamines including primary, sec-
ondary, and tertiary amines, the most optimum basic catalyst for
the reaction was determined to be the one with a secondary amine
group that was grafted in isopropanol (MCM41-MAPI). This obser-
vation is interesting compared to our previous study for the Henry
reaction where the sample with primary amine was obtained to be
the most effective cooperative catalyst [57]. Upon comparison of
the catalysis on the basis of catalytic yield and turn-over-number,
sample MCM41-MAPI showed the highest acid–base cooperative
catalytic activity and efficiency for aldol reaction, even when com-
pared to other materials reported previously. A mechanism was
proposed revealing the cooperative catalytic activity between the
site-isolated organoamine groups and residual silanols, where the
surface silanol groups not only participate in the formation of en-
amine intermediate but also facilitate the nucleophilic addition.
This new solid-base catalyst, which contained many residual sur-
face silanols, has enhanced cooperative catalytic activity and selec-
tivity while its synthesis involves no need of additional secondary
organic acid group and proceeds through a less costly procedure.
[28] T. Becue, J.-M. Manoli, C. Potvin, G. Djega-Mariadassou, M. Delamar, J. Phys.
Chem. B 101 (1997) 6429–6435.
[29] P. Grange, P. Bastians, R. Conanec, R. Marchand, Y. Laurent, Appl. Catal. A 114
(1994) L191–L196.
[30] A. Massinon, E. Gúeguen, R. Conanec, R. Marchand, Y. Laurent, P. Grange, Stud.
Surf. Sci. Catal. 101 (1996) 77–85.
[31] A. Stein, B. Wehrle, M. Jansen, Zeolites 13 (1993) 291–298.
[32] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992)
710–712.
[33] Y.V. Subba Rao, D.E. De Vos, P.A. Jacobs, Angew. Chem. Int. Ed. 36 (1997) 2661–
2663.
[34] K. Shimizu, H. Suzuki, E. Hayashi, T. Kodama, Y. Tsuchiya, H. Hagiwara, Y.
Kitayama, Chem. Commun. (2002) 1068–1069.
Acknowledgment
[35] Y. Inaki, Y. Kajita, H. Yoshida, K. Ito, T. Hattori, Chem. Commun. (2001) 2358–
2359.
[36] Q. Yang, M.P. Kapoor, N. Shirokura, M. Ohashi, S. Inagaki, J.N. Kondo, K. Domen,
J. Mater. Chem. 15 (2005) 666–673.
[37] R.V. Crieken, J.A. Melero, G. Morales, J. Mol. Catal. A 256 (2006) 29–36.
[38] K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara, S. Yamanaka, Angew. Chem., Int.
Ed. 46 (2007) 7625–7628.
[39] T. Asefa, M. Kruk, N. Coombs, H. Grondey, M.J. MacLachlan, M. Jaroniec, G.A.
Ozin, J. Am. Chem. Soc. 125 (2003) 11662–11673.
We gratefully acknowledge the financial assistance by the US
National Science Foundation (NSF), CAREER Grant No. CHE-
0645348 and NSF DMR-0804846.
Appendix A. Supplementary material
[40] Y. Xia, Mokaya, Robert. Stud. Surf. Sci. Catal. 156 (2005) 125–132.
[41] Y. Xia, R. Mokaya, J. Mater. Chem. 14 (2004) 2507–2515.
[42] M.P. Kapoor, S. Inagaki, Chem. Lett. 32 (2003) 94–95.
Supplementary data associated with this article can be found, in