D
K. Colas, A. Mendoza
Letter
Synlett
the versatile chemistry of the C–S bond17 is primed to max-
imize the utility of the iterative C–C coupling strategy that
we have introduced herein.
Jamison, T. F.; Jensen, K. F.; Monbaliu, J.-C. M.; Myerson, A. S.;
Revalor, E. M.; Snead, D. R.; Stelzer, T.; Weeranoppanant, N.;
Wong, S. Y.; Zhang, P. Science 2016, 352, 61.
(3) (a) Hartwig, J.; Kirschning, A. Angew. Chem. Int. Ed. 2015, 54,
10412. (b) Li, J.; Grillo, A. S.; Burke, M. D. Acc. Chem. Res. 2015,
48, 2297. (c) Xu, L.; Zhang, S.; Li, P. Chem. Soc. Rev. 2015, 44,
8848. (d) Jurjens, G.; Kirschning, A.; Candito, D. A. Nat. Prod. Rep.
2015, 32, 723. (e) Vara, B. A.; Jouffroy, M.; Molander, G. A. Chem.
Sci. 2017, 8, 530.
(4) (a) Burns, M.; Essafi, S.; Bame, J. R.; Bull, S. P.; Webster, M. P.;
Balieu, S.; Dale, J. W.; Butts, C. P.; Harvey, J. N.; Aggarwal, V. K.
Nature 2014, 513, 183. (b) Bootwicha, T.; Feilner, J. M.; Myers, E.
L.; Aggarwal, V. K. Nat. Chem. 2017, 9, 896. (c) Battilocchio, C.;
Feist, F.; Hafner, A.; Simon, M.; Tran, D. N.; Allwood, D. M.;
Blakemore, D. C.; Ley, S. V. Nat. Chem. 2016, 8, 360. (d) Balieu, S.;
Hallett, G. E.; Burns, M.; Bootwicha, T.; Studley, J.; Aggarwal, V.
K. J. Am. Chem. Soc. 2015, 137, 4398. (e) Noble, A.; Roesner, S.;
Aggarwal, V. K. Angew. Chem. Int. Ed. 2016, 55, 15920.
(5) (a) Burke, M. D.; Schreiber, S. L. Angew. Chem. Int. Ed. 2004, 43,
46. (b) CJ, O. C.; Beckmann, H. S.; Spring, D. R. Chem. Soc. Rev.
2012, 41, 4444. (c) Kato, N.; Comer, E.; Sakata-Kato, T.; Sharma,
A.; Sharma, M.; Maetani, M.; Bastien, J.; Brancucci, N. M.;
Bittker, J. A.; Corey, V.; Clarke, D.; Derbyshire, E. R.; Dornan, G.
L.; Duffy, S.; Eckley, S.; Itoe, M. A.; Koolen, K. M.; Lewis, T. A.;
Lui, P. S.; Lukens, A. K.; Lund, E.; March, S.; Meibalan, E.; Meier,
B. C.; McPhail, J. A.; Mitasev, B.; Moss, E. L.; Sayes, M.; Van
Gessel, Y.; Wawer, M. J.; Yoshinaga, T.; Zeeman, A. M.; Avery, V.
M.; Bhatia, S. N.; Burke, J. E.; Catteruccia, F.; Clardy, J. C.;
Clemons, P. A.; Dechering, K. J.; Duvall, J. R.; Foley, M. A.;
Gusovsky, F.; Kocken, C. H.; Marti, M.; Morningstar, M. L.;
Munoz, B.; Neafsey, D. E.; Sharma, A.; Winzeler, E. A.; Wirth, D.
F.; Scherer, C. A.; Schreiber, S. L. Nature 2016, 538, 344.
(d) Nielsen, T. E.; Schreiber, S. L. Angew. Chem. Int. Ed. 2008, 47,
48.
In summary, the iterative construction of complex car-
bon frameworks using sulfur compounds has been enabled
by a one-pot S-oxidation/reductive-coupling protocol. This
strategy is based on an intermolecular reductive C–C cou-
pling between sulfoxides and sp3-, sp2-, and sp-Grignard
nucleophiles that our group has recently developed.13 Here-
in we have introduced the sulfur moiety as control unit for
C–C coupling through iterative fluctuation of its redox state.
The choice of sulfur benefits from its rich chemistry, which
can deliver unrelated scaffolds such as carbonyls, olefins,
halides, organometallics and boronic esters, among others.
Despite these features, important challenges remain to be
solved to reach the goal of assembling in solid-phase qua-
ternary carbon centers in an enantiospecific fashion. Our
group is actively pursuing fundamental solutions to these
challenges, thus aiming to complement current approaches
towards iterative C–C assembly and to inspire further re-
search in downstream sulfur manipulations.
Funding Information
Financial support for this work has been received from the Knut and
Alice Wallenberg Foundation (KAW2016.0153), the ERC (StG-
714737), the Swedish Research Council (Vetenskapsrådet, 2012-
2969), the Swedish Innovation Agency (VINNOVA) through the Ber-
zelii Center EXSELENT, the Marie Curie Actions (631159), and Astra-
Zeneca AB.
)(
(6) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979.
(7) (a) Screttas, C. G.; Micha-Screttas, M. J. Org. Chem. 1978, 43,
1064. (b) Haufe, G.; Hugenberg, V. Synlett 2008, 106.
(c) Canestrari, D.; Lancianesi, S.; Badiola, E.; Strinna, C.; Ibrahim,
H.; Adamo, M. F. Org. Lett. 2017, 19, 918. (d) Abramovitch, A.;
Varghese, J. P.; Marek, I. Org. Lett. 2004, 6, 621. (e) Back, T. G.;
Baron, D. L.; Yang, K. J. Org. Chem. 1993, 58, 2407. (f) Foubelo, F.;
Yus, M. Chem. Soc. Rev. 2008, 37, 2620.
Acknowledgment
The authors are indebted to the personnel of the Dept. of Organic
Chemistry, the Dept. of Materials and Environmental Chemistry (SU),
and AstraZeneca for unrestricted support.
(8) (a) Feldman, K. S. Tetrahedron 2006, 62, 5003. (b) Pulis, A. P.;
Procter, D. J. Angew. Chem. Int. Ed. 2016, 55, 9842. (c) Bur, S. K.;
Padwa, A. Chem. Rev. 2004, 104, 2401. (d) Gamba-Sánchez, D.;
Garzón-Posse, F. Pummerer-Type Reactions as Powerful Tools in
Organic Synthesis, In Molecular Rearrangements in Organic
Synthesis; John Wiley and Sons: Hoboken, NJ, 2015, Chap. 20,
66.
Supporting Information
Supporting information for this article is available online at
the Supporting Information for details.
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
(9) Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc. Rev. 2010, 39,
1355.
(10) Smith, L. H.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew.
Chem. Int. Ed. 2010, 49, 5832.
References and Notes
(1) (a) Sans, V.; Cronin, L. Chem. Soc. Rev. 2016, 45, 2032.
(b) Eastgate, M. D.; Schmidt, M. A.; Fandrick, K. R. Nat. Rev.
Chem. 2017, 1, 0016. (c) Peplow, M. Nature 2014, 512, 20.
(2) (a) Merrifield, R. B. Science 1965, 150, 178. (b) Caruthers, M. H.
Science 1985, 230, 281. (c) Plante, O. J.; Palmacci, E. R.;
Seeberger, P. H. Science 2001, 291, 1523. (d) Li, J.; Ballmer, S. G.;
Gillis, E. P.; Fujii, S.; Schmidt, M. J.; Palazzolo, A. M.; Lehmann, J.
W.; Morehouse, G. F.; Burke, M. D. Science 2015, 347, 1221.
(e) Tsubogo, T.; Oyamada, H.; Kobayashi, S. Nature 2015, 520,
329. (f) Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.;
(11) For recent examples of Pummerer processes with electron-rich
arenes, see: (a) Shrives, H. J.; Fernandez-Salas, J. A.; Hedtke, C.;
Pulis, A. P.; Procter, D. J. Nat. Commun. 2017, 8, 14801.
(b) Kobatake, T.; Fujino, D.; Yoshida, S.; Yorimitsu, H.; Oshima,
K. J. Am. Chem. Soc. 2010, 132, 11838. (c) Yanagi, T.; Otsuka, S.;
Kasuga, Y.; Fujimoto, K.; Murakami, K.; Nogi, K.; Yorimitsu, H.;
Osuka, A. J. Am. Chem. Soc. 2016, 138, 14582. For examples with
enolate equivalents, see: (d) Shang, L.; Chang, Y.; Luo, F.; He, J.
N.; Huang, X.; Zhang, L.; Kong, L.; Li, K.; Peng, B. J. Am. Chem. Soc.
2017, 139, 4211. (e) Fernandez-Salas, J. A.; Eberhart, A. J.;
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E