Communication
ChemComm
side chains that impose larger steric hindrance during dimeriza- system provides guidelines to design smart acene-based materials
tion. The NMR analyses again demonstrate that syn-[2,2]-daTDT2 which are promising for photochromic and photo-responsive
is still the single photodimer with identical regioselectivity and applications.
stereoselectivity in solution. It is of great interest to further
This work is supported by Ministry of Science and Technology,
investigate the photodimerization in the solid state. The X-ray Taiwan (grant No. MOST 107-3017-F009-003 and 107-2628-M-009-
diffraction (XRD) patterns of aTDT1 powder and single crystal are 003-MY3) and Ministry of Education, Taiwan.
compared in Fig. S11 (ESI†). The close resemblance between the
two patterns suggests that the powder sample possesses a similar
solid-state stacking structure to the single crystal shown in Fig. 5.
Upon direct exposure to irradiation, the aTDT1 powder remain
unreacted. Solvent vapour annealing of the aTDT1 powder was
Conflicts of interest
There are no conflicts to declare.
therefore attempted. When aTDT1 is saturated with d-chloroform
vapour in a closed jar under 420–460 nm irradiation, photo-
Notes and references
dimerization proceeds gradually to form a single isomer which
is also determined to be syn-[2,2]-daTDT1. d-Chloroform vapour
would penetrate into the powder to slightly dissolve the aTDT1
molecules, rendering them with sufficient freedom for structural
transformation. It is envisaged that the two aTDT1 molecules in
the syn geometry undergo molecular slippage from the offset
face-to-face stacking to the eclipsed face-to-face stacking before
dimerization, leading to the syn-[2,2]-daTDT1 product. In addition
to the aliphatic dispersion interactions, it is also envisaged that
the eclipsed fact-to-face dimeric stacking would have stronger p–p
interactions than the offset fact-to-face stacking. The thermo-
dynamically more stable eclipsed complex might account for the
selectivity of syn-[2,2]-daTDT over syn-[2,3]-daTDT.
Furthermore, an aTDT2 thin film was prepared by spin-
coating of its solution on a glass slide. After 15 min light
irradiation, the original yellow thin film became totally trans-
parent, demonstrating that photodimerization can successfully
take place in the thin-film state (Fig. S12, ESI†). More importantly,
the product was collected and proven to be the syn-[2,2]-daTDT2
as the single product again. Compared with the XRD of aTDT2
powder, the aTDT2 thin film exhibits more diverse XRD peaks
(Fig. S13, ESI†), suggesting that the aTDT2 thin film should
be polymorphic. Considering that the photodimerization of the
anthracene single crystal actually occurs in its defects,12 the
polymorphic packing in the aTDT2 thin film might be responsible
for the distinct photo-reactivity. To our knowledge, this study is
the first demonstration that a tetracene-based material can carry
out a light-induced topochemical reaction with high regio- and
stereo-selectivity.
1 (a) Y. C. Cheng, R. J. Silbey, D. A. Da Silva Filho, J. P. Calbert, J. Cornil
and J. L. Bredas, J. Chem. Phys., 2003, 118, 3764; (b) J. Kao and A. C.
Lilly, J. Am. Chem. Soc., 1987, 109, 4149; (c) W.-Q. Deng and W. A.
Goddard III, J. Phys. Chem. B, 2004, 108, 8614; (d) Q. Ye and C. Chi,
Chem. Mater., 2014, 26, 4046.
2 (a) R. W. I. De Boer, T. M. Klapwijk and A. F. Morpurgo, Appl. Phys. Lett.,
2003, 83, 4345; (b) C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich,
D. J. Gundlach and B. Batlogg, J. Appl. Phys., 2004, 96, 2080; (c) E. Menard,
V. Podzorov, S. Anshu Gaur, M. E. Gershenson and J. A. Rogers, Adv.
Mater., 2004, 16, 23; (d) V. Podzorov, E. Menard, A. Borissov,
V. Kiryukhin, J. A. Rogers and M. E. Gershenson, Phys. Rev. Lett.,
2004, 93, 8; (e) S. H. Chan, H. K. Lee, Y. M. Wang, N. Y. Fu, X. M.
Chen, Z. W. Cai and H. N. C. Wong, Chem. Commun., 2005, 66;
( f ) T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith and T. D.
Jones, Mater. Res. Soc. Symp. Proc., 2003, 771, L6.5.1.
3 J. E. Anthony, Angew. Chem., Int. Ed., 2008, 47, 452.
4 (a) S. S. Zade and M. Bendikov, J. Phys. Org. Chem., 2012, 25, 452;
(b) H. Bouas-Laurent, A. Castellan, J. P. Desvergnea and R. Lapouyade,
Chem. Soc. Rev., 2001, 30, 248; (c) H. Bouas-Laurent, A. Castellan, J. P.
Desvergnea and R. Lapouyade, Chem. Soc. Rev., 2000, 29, 43;
(d) J. Reichwagen, H. Hopf, A. D. Guerzo, J. Desvergne and
H. Bouas-Laurent, Org. Lett., 2004, 6, 12; (e) S. S. Zade, N. Zamoshchik,
A. R. Reddy, G. Fridman-Marueli, D. Sheberla and M. Bendikov, J. Am.
Chem. Soc., 2011, 133, 10803; ( f ) D. W. Bjarneson and N. O. Petersen,
J. Photochem. Photobiol., A, 1992, 63, 327; (g) S. Grimme, C. Diedrich and
M. Korth, Angew. Chem., Int. Ed., 2006, 45, 625.
5 (a) A. G. L. Olive, A. D. Guerzo, J. Pozzo, J. P. Desvergne, J. Reichwagen
and H. Hopf, J. Phys. Org. Chem., 2007, 20, 838; (b) R. Einholz, T. Fang,
R. Berger, P. Gruninger, A. Fruh, T. Chasse, R. F. Fink and H. F.
Bettinger, J. Am. Chem. Soc., 2017, 139, 4435.
6 H. Bouas-Laurent and H. Durr, Pure Appl. Chem., 2001, 73, 639.
7 (a) R. Lapouyade, A. Nourmamode and H. Bouas-Laurent, Tetrahedron,
1980, 36, 2311; (b) B. Purushothaman, S. R. Parkin and J. E. Anthony,
Org. Lett., 2010, 12, 9; (c) C. P. Benard, Z. Geng, M. A. Heuft, K. VanCrey
and A. G. Fallis, J. Org. Chem., 2007, 72, 7229.
8 (a) K. C. Dickey, J. E. Anthony and Y. L. Loo, Adv. Mater., 2006,
18, 1721; (b) J. G. Laquindanum, H. E. Katz and A. J. Lovinger, J. Am.
Chem. Soc., 1998, 120, 664; (c) M. Mamada, T. Minamiki, H. Katagiri
and S. Tokito, Org. Lett., 2012, 14, 4062; (d) M. M. Payne, S. R.
Parkin, J. E. Anthony, C.-C. Kuo and T. N. Jackson, J. Am. Chem. Soc.,
2005, 127, 4986; (e) A. Pietrangelo, M. J. MacLachlan, M. O. Wolf and
B. O. Patrick, Org. Lett., 2007, 9, 3571; ( f ) S. Subramanian, S. K. Park,
S. R. Parkin, V. Podzorov, T. N. Jackson and J. E. Anthony, J. Am. Chem.
Soc., 2008, 130, 2706; (g) B. Tylleman, C. M. L. Vande Velde, J.-Y.
Balandier, S. Stas, S. Sergeyev and Y. H. Geerts, Org. Lett., 2011, 13, 5208.
9 K. P. Goetz, Z. Li, J. W. Ward, C. Bougher, J. Rivnay, J. Smith, B. R.
Conrad, S. R. Parkin, T. D. Anthopoulos, A. Salleo, J. E. Anthony and
O. D. Jurchescu, Adv. Mater., 2011, 23, 3698.
In summary, we have developed dialkyl angular-shaped
TDTs (aTDT1 and aTDT2) which undergo [4+4] photodimerization
reaction to form a butterfly-shaped syn-[2,2]-daTDT. Instead of the
sterically-favored centrosymmetric anti-[2,3]-daTDT, the plano-
symmetric syn-[2,2]-daTDT surprisingly turns out to be the single
isomer out of six possible products. The structure of syn-[2,2]-
daTDT is carefully determined by a series of NMR techniques
1
including H, 13C, HSQC, HMBC, and ROESY, as well as mass 10 S. Shinamura, I. Osaka, E. Miyazaki, A. Nakao, M. Yamagishi,
J. Takeya and K. Takimiya, J. Am. Chem. Soc., 2011, 133, 5024.
11 S. Ehrlich, H. F. Bettinger and S. Grimme, Angew. Chem., Int. Ed.,
spectrometry. Side-chain interactions inducing self-assembly may
dictate the regio- and stereo-selectivity. Most importantly, the
2013, 52, 10892.
photodimerization can take place topochemically in the thin- 12 (a) Y. Mori, Y. Horikoshi and K. Maeda, Bull. Chem. Soc. Jpn., 1996,
69, 1755; (b) D. P. Craig and P. Sarti-Fantoni, Chem. Commun., 1966,
742; (c) D. P. Craig and C. D. Akon, Trans. Faraday Soc., 1966,
62, 1673; (d) V. Ramamurthy and K. Venkatesan, Chem. Rev., 1987,
film state as well as in the solvent-annealed powder while
maintaining its original regio- and stereo-selectivity. The
in-depth understanding of the photodimerization in the aTDT
87(2), 433.
384 | Chem. Commun., 2019, 55, 381--384
This journal is ©The Royal Society of Chemistry 2019