2760
A. Kumbhar et al. / Tetrahedron Letters 53 (2012) 2756–2760
Figure 3. Conceptual picture of quinoxaline formation.
19. (a) Tavare, N. S.; Jadhav, V. K. J. Chem. Eng. Data 1996, 41, 1196; (b) Koparkar, Y.
P.; Gaikar, V. G. Sep. Sci. Technol. 2004, 39, 3879; (c) Ooya, T.; Lee, S.; Huh, K.;
Park, K. Nanocarrier Technologies: Frontiers of Nanotherapy; Springer:
Netherlands, 2006. p. 51; (d) Lee, S. C.; Huh, K. M.; Lee, J.; Cho, Y. W.;
Galinsky, R. E.; Park, K. Biomacromolecules 2007, 8, 202.
20. (a) Friberg, S. E.; Yang, J.; Huang, T. Ind. Eng. Chem. Res. 1996, 35, 2856; (b) Chen,
X.; Micheau, J. C. J. Colloid Interface Sci. 2002, 249, 172; (c) Chandratre, S. J.;
Filmwala, Z. A. J. Dispersion Sci. Technol. 2007, 28, 279; (d) Khadilkar, B. M.;
Madyar, V. R. Org. Process Res. Dev. 2001, 5, 452.
the University Grants Commission, New Delhi, India for the award
of Teacher Fellowship under the F. I. P. of the XIth Plan.
References and notes
1. (a) Vishnu, K. T.; Dharmendra, B. Y.; Hardesh, K. M.; Ashok, K. C.; Praveen, K. S.
Bioorg. Med. Chem. Lett. 2006, 14, 6120; (b) Székelyhidi, Z.; Pató, J.; Wáczek, F.;
Bánhegyi, P.; Hegymegi-Barakonyi, B.; Erös, D.; Mészáros, G.; Hollósy, F.;
Hafenbradl, D.; Obert, S.; Klebl, B.; Kéri, G.; Orfi, L. Bioorg. Med. Chem. Lett. 2005,
15, 3241; (c) Hazeldine, S. T.; Polin, L.; Kushner, J.; White, K.; Corbett, T. H.;
Biehl, J.; Horwitz, J. P. Bioorg. Med. Chem. 2005, 13, 1069; (d) Fedora, G.;
Francesca, A.; Osvaldo, D. G.; Antonella, B.; Antonio, G.; Nouri, N. Bioorg. Med.
Chem. 2007, 15, 288.
2. (a) LoRusso, P. M.; Parchment, R.; Demchik, L.; Knight, J.; Polin, L.; Dzubow, J.;
Behrens, C.; Harrison, B.; Trainor, G.; Corbett, T. H. Invest. New Drugs 1998, 16,
287; (b) Fawzi, U. S. Patent 4,609,396, 1986.; (c) Davis, R. G.; Bell, A. R.;
Minatelli, J. A. E. P. 0,323,727 A2, 1989.
3. (a) Katoh, A.; Yoshida, T.; Ohkanda, J. Heterocycles 2000, 52, 911; (b) Thomas, K.
R. J.; Velusamy, M.; Lin, J. T.; Chuen, C. H.; Tao, Y. T. Chem. Mater. 2005, 17,
1860; (c) Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J.
Mater. Chem. 2001, 11, 2238; (d) Sascha, O.; Rudiger, F. Synlett 2004, 1509; (e)
Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 1122.
4. Brown, D. J. In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Wipf, P.,
Eds.; John Wiley and Sons: New Jersey, 2004.
5. Madhav, B.; Narayana Murthy, S.; Prakash Reddy, V.; Rama Rao, K.; Nageswar,
Y. V. D. Tetrahedron Lett. 2009, 50, 6025.
6. (a) Zare, A.; Hasaninejad, A.; Parhami, A.; Moosavi-Zare, A. R.; Khedri, F.;
Parsaee, Z.; Abdolalipoor-Saretoli, M.; Khedri, M.; Roshankar, M.; Deisi, H. J.
Serb. Chem. Soc. 2010, 75, 1315; (b) Meshram, H. M.; Ramesh, P.; Santosh
Kumar, G.; Chennakesava Reddy, B. Tetrahedron Lett. 2010, 51, 4313.
7. (a) More, S. V.; Sastry, M. N. V.; Wang, C. C.; Yao, C. F. Tetrahedron Lett. 2005, 46,
6345; (b) Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusare, S.
R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183.
8. Huang, T. K.; Shi, L.; Wang, R.; Guo, X. Z.; Lu, X. X. Chin. Chem. Lett. 2009, 20,
161.
9. Shaabani, A.; Rezayan, A. H.; Behnam, M.; Heidary, M. C. R. Chimie. 2009, 12,
1249.
10. Jeena, V.; Robinson, R. S. Beilstein J. Org. Chem. 2009, 5, 24.
11. Lin, P. Y.; Hou, R. S.; Wang, H. M.; Kang, I. J.; Chen, L. C. J. Chin. Chem. Soc. 2009,
56, 683.
12. Srinivas, C.; Kumar, C. N. S. S. P.; Rao, V. J.; Palaniappan, S. J. Mol. Catal. A: Chem.
2007, 265, 227.
13. Meshram, H. M.; Santosh Kumar, G.; Ramesh, P.; Chennakesava Reddy, B.
Tetrahedron Lett. 2010, 51, 2580.
14. More, S. V.; Sastry, M. N. V.; Yao, C. F. Green Chem. 2006, 8, 91.
15. Das, B.; Venkateswarlu, K.; Sunnel, K.; Majhi, A. Tetrahedron Lett. 2007, 48,
5371.
16. Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321.
17. (a) Holmberg, K. Curr. Opin. Colloid Interface Sci. 2003, 8, 187; (b) Chanda, A.;
Fokin, V. V. Chem. Rev. 2009, 109, 725; (c) Gron, L. U.; Tinsley, A. S. Tetrahedron
Lett. 1999, 40, 227; (d) Li, C. J. Chem. Rev. 2005, 105, 3095; (e) Breslow, R. Acc.
Chem. Res. 1991, 24, 159.
18. (a) Srinivas, V.; Balasubramanian, D. Langmuir 1998, 14, 6658; (b) Srinivas, V.;
Rodley, G. A.; Ravikumar, K.; Robinson, W. T.; Turnbull, M. M.;
Balasubramanian, D. Langmuir 1997, 13, 3235.
21. (a) Rashinkar, G.; Kamble, S.; Kumbhar, A.; Salunkhe, R. Transition Met. Chem.
2010, 35, 185; (b) Kamble, S.; Kumbhar, A.; Rashinkar, G.; Barge, M.; Salunkhe,
R. Ultrason. Sonochem. 2012, 19, 812.
22. (a) Gnanendran, N.; Amin, R. J. Pet. Sci. Eng. 2003, 40, 37; (b) Rovetto, L. J.;
Strobel, T. A.; Koh, C. A.; Sloan, E. D. Fluid Phase Equilibria 2006, 247, 84.
23. General procedure for the synthesis of quinoxaline and pyrido[2,3-b]pyrazine: In a
small Schlenk tube, 1,2-diamine (1 mmol), 1,2-diketone (1 mmol), PTSA
(5 mol %), and 40% aq NaPTS (5 ml) were taken and the reaction mixture was
stirred at room temperature. The reaction process was monitored by thin layer
chromatography (TLC). After completion of the reaction, the mixture was
diluted with water (20 mL). The filtrate was washed with water and dried
affording the corresponding products.
Spectral data of representative compounds: Compound 3d: Yellow solid; mp 228–
229 °C; 1H NMR (300 MHz, CDCl3, d ppm): 7.73–7.89 (6H, m), 8.31–8.37 (2H,
m), 8.59 (2H, d, J = 8.7 Hz), 9.42 (2H, dd, J = 7.8 Hz, 1.8 Hz); 13C NMR (75 MHz,
CDCl3, d ppm): 122.93, 126.27, 127.95, 129.44, 129.77, 130.32, 132.06, 142.19,
142.45; MS (ESI): m/z 280; elemental analysis (calcd C = 85.6, H = 4.3, N = 9.9:
observed C = 86.0, H = 4.2, N = 9.8).
Compound 3e: White solid; mp 178–179 °C; 1H NMR (300 MHz, CDCl3, d ppm):
7.21–7.25 (2H, m), 7.80–7.85 (4H, m), 8.00 (2H, d, J = 7.0 Hz), 8.22 (2H, dd,
J = 6.6 Hz, 3.3 Hz), 8.34 (2H, d, J = 4.2 Hz); 13C NMR (75 MHz, CDCl3, d ppm):
122.80, 124.20, 129.40, 130.28, 136.49, 141.14, 148.27, 152.41, 157.53; MS
(ESI): m/z 284; elemental analysis (calcd C = 76.0, H = 4.2, N = 19.7: observed
C = 76.2, H = 4.3, N = 19.4).
Compound 3g: Yellow solid; mp 217–219 °C; 1H NMR (300 MHz, CDCl3, d ppm):
7.71–7.85 (5H, m), 8.55 (2H, d, J = 7.8 Hz), 8.67 (1H, dd, J = 8.4 Hz, 1.8 Hz),
9.29–9.36 (2H, m) 9.54 (1H, dd, J = 7.8 Hz, 1.5 Hz); 13C NMR (75 MHz, CDCl3, d
ppm): 123.90, 126.21, 127.32, 129.50, 129.86, 130.82, 132.10, 132.50, 138.13,
145.09, 152.42, 154.31; MS (ESI): m/z 281; elemental analysis (calcd C = 81.1,
H = 3.9, N = 15.0: observed C = 81.1, H = 4.0, N = 14.9).
Compound 3i: White solid; mp 236–237 °C; 1H NMR (300 MHz, CDCl3, d ppm):
7.41–7.45 (2H, m), 7.53–7.56 (6H, m), 8.65 (1H, d, J = 2.4 Hz), 9.18 (1H, d,
J = 2.4 Hz); 13C NMR (75 MHz, CDCl3, d ppm): 121.34, 124.65, 124.91, 131.37,
131.66, 131.72, 131.84, 136.37, 136.64, 139.20, 148.10, 153.80, 154.86, 155.56;
MS (ESI): m/z 517; elemental analysis (calcd C = 43.8, H= 2.0, Br = 46.1, N = 8.0.
observed C = 43.7, H = 2.1, Br = 46.1, N = 8.1).
Compound 3j: White solid; mp 235–238 °C; 1H NMR (300 MHz, CDCl3, d ppm):
7.72–7.87 (4H, m), 8.56 (2H, d, J = 8.1 Hz), 8.81–8.83 (1H, m), 9.25–9.29 (2H,
m), 9.47 (1H, d, J = 7.9 Hz); 13C NMR (75 MHz, CDCl3, d ppm): 120.64, 122.97,
123.10, 126.70, 127.31, 128.21, 128.32, 129.29, 129.54, 131.30, 131.47, 132.59,
137.49, 139.49, 144.22, 155.50; MS (ESI): m/z 359; elemental analysis (calcd
C = 63.3, H = 2.8, Br = 22.2, N = 11.6: observed, C = 63.5, H = 2.8, Br = 22.2,
N = 11.5).
Compound 6b: Yellow solid; mp >300 °C; 1H NMR (300 MHz, CDCl3, d ppm):
7.84–7.90 (4H, m) 8.07–8.10 (4H, m), 8.27–8.38 (8H, m), 8.65 (2H, d,
J = 1.8 Hz); MS (ESI): m/z 566; elemental analysis (calcd C = 76.3, H = 3.9,
N = 19.8: observed, C = 76.4, H = 3.8, N = 19.7).