derivatives. Recently, Jeganmohan et al. reported Ru cata-
lyzed ortho-alkenylation of aromatic aldehydes.12e Based on
the literature precedence12 and in continuation of our quest
for the selective functionalization of indoles,13 we undertook
an investigation to functionalize indole at the C-4 position.
Scheme 1
The preliminary reaction of 1-benzyl-1H-indole-3-car-
baldehyde (1a) with methyl acrylate (2a) in the presence of
Ru(II) (5 mol %), AgSbF6 (20 mol %), and Cu(OAc)2
3
H2O (1.0 equiv) in ClCH2CH2Cl at 100 °C resulted in the
formation of C-4-substituted product 3aa in a major
amount (47%) along with a mixture of C-2 alkenylated
product 4aa (12%), 5aa (at C-2 and C-4 positions, 5%),
and 1a (34%, entry 1, Table 1). In the absence of either Ru
or Ag, no reaction was observed, whereas the absence of
copper acetate resulted in the formation of C-4 substituted
indole 3aa in trace amounts (entries 2À4, Table 1).
Further, enhancing the amount of Ru(II) to 10 mol %
resulted in the formation of a mixture of products 3aa, 4aa,
5aa, and 1a (45:20:13:22 ratio, entry 5, Table 1). Decreas-
ing the amount of the Cu catalyst to 0.5 equiv resulted in
the formation of the expected C-4 alkenylated product 3aa
in low yields (18%) along with unreacted aldehyde 1a
(82%, entry 6). Temperature control experiments revealed
the formation of 3aa in 17% yield when the reaction was
performed at 60 °C (entry 7). Increasing the temperature to
120 °C resulted in the formation of a mixture of 3aa, 4aa,
5aa, and starting material 1a in a ratio of 45:19:7:29,
respectively (entry 8, Table 1). Based on these observations
(entries5À8), we performed the reaction using Ru (10 mol %),
Cu (0.5 equiv) at 120 °Ctofindtheformationof3aa as a major
product (58% yield) along with 4aa, 5aa, and aldehyde 1a
(4%, 2%, 36% yields, entry 9). Further screening studies
revealed that AgSbF6 is a suitable activator, as the noncoor-
Figure 1. Biologically active compounds derived from C-4
substituted indoles.
Inthisstudy, wedescribe ourrecentfinding onthe highly
regioselective functionalization of indole at the C-4 posi-
tion by employing the aldehyde functional group as a
directing group, and Ru as a catalyst under mild reaction
conditions (open flask). An interesting observation is that,
unlike other known methods,12 in the present study it was
found that the reaction involves a six membered transition
state14 that leads to the expected product (Scheme 1). A
selective functionalization of indole at the C-4 position
using an aldehyde as a directing group provides advan-
tages of either removing the aldehyde group6a or further
functionalization.
(9) Review for directing group chemistry: (a) Engle, K. M.; Mei, T.-S.;
Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (b) Mewald, M.;
Schiffner, J. A.; Oestreich, M. Angew. Chem., Int. Ed. 2012, 51, 1763. (c)
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (d) Yamashita,
M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 2337. (e)
Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194. (f)
Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534. (g)
Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005,
127, 13154. (h) Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem.
Soc. 2006, 128, 14220. (i) Ihara, H.; Suginome, M. J. Am. Chem. Soc.
2009, 131, 7502. (j) Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani, N.
J. Am. Chem. Soc. 2009, 131, 3174. (k) Ritleng, V.; Sirlin, C.; Pfeffer, M.
Chem. Rev. 2002, 102, 1731. (l) Mousseau, J. J.; Charette, A. B. Acc.
Chem. Res. 2013, 46, 412.
(10) (a) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012,
112, 5879. (b) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886.
(11) Liu, Q.; Li, Q.; Ma, Y.; Jia, Y. Org. Lett. 2013, 15, 4528.
(12) (a) Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2011, 13, 706. (b) Ackermann, L.; Pospech, J. Org.
Lett. 2011, 13, 4153. (c) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.;
Dixneuf, P. H. Green Chem. 2011, 13, 3075. (d) Padala, K.; Jeganmohan,
M. Org. Lett. 2011, 13, 6144. (e) Padala, K.; Jeganmohan, M. Org. Lett.
2012, 14, 1134. (f) Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A. V.
Org. Lett. 2012, 14, 728. (g) Kakiuchi, F.; Sato, T.; Igi, K.; Chatani, N.;
Murai, S. Chem. Lett. 2001, 386. (h) Ackermann, L. Acc. Chem. Res.
201310.1021/ar3002798.
À
dinating counterion SbF6 keeps the Ru coordination site
empty so that Ru can bind to the substrate. It was also found
that Cu(OAc)2 H2O is the most appropriate oxidant for the
3
reaction (entries 10À14). Increasing the stoichiometry of
methyl acrylate (2a) to 2.5 and 4 equiv in the presence of
10 mol % Ru(II) and 0.5 equiv of Cu(II) has enhanced the
yield of C-4 alkenylated product 3aa to 63% and 82%
respectively (entries 15À16). Based on these screening studies,
we arrived at the optimal conditions for this reaction, i.e., 1a
(1 equiv), 2a (4 equiv), [Ru(p-cymene)Cl2]2 (10 mol %), Ag
salt (20 mol %), and Cu(OAc)2 H2O (0.5 equiv) in
3
ClCH2CH2Cl at 120 °C in the presence of air.
Next, we continued to explore the scope of the reaction,
and the results are presented in Schemes 2 and 3. A variety
of 1-benzyl-1H-indole-3-carbaldehyde derivatives 1aÀ1e
reacted with methyl acrylate 2a to furnish C-4 alkenylated
products 3aa,3ba,3ca,3da,and3ea ingoodyields(80À95%).
(13) Lanke, V.; Prabhu, K. R. Org. Lett. 2013, 15, 2818.
(14) Li,J.;Kornhaab,C.;Ackermann,L.Chem. Commun. 2012,48, 11343.
B
Org. Lett., Vol. XX, No. XX, XXXX