Journal of the American Chemical Society
Communication
(15) Shigehisa, H.; Mizutani, T.; Tosaki, S.-Y.; Ohshima, T.;
Shibasaki, M. Tetrahedron 2005, 61, 5057−5065.
(16) Mandai, T.; Matsumoto, T.; Kawada, M.; Tsuji, J. J. Org. Chem.
1992, 57, 1326−1327.
NMR and mass spectra were determined at UC Irvine using
instruments purchased with the assistance of NSF and NIH
shared instrumentation grants. We thank Greg Lackner and Dr.
Gerald Pratsch for helpful discussions. We thank Professor
Mary J. Garson, the University of Queensland, for the high-field
NMR spectra of natural chromodorolide B.
(17) (a) Miyano, S.; Yamashita, J.; Hashimoto, H. Bull. Chem. Soc.
Jpn. 1972, 45, 1946. (b) Denmark, S. E.; Edwards, J. P. J. Org. Chem.
1991, 56, 6974−6981.
(18) For reviews, see: (a) Furstner, A. Chem. Rev. 1999, 99, 991−
̈
1046. (b) Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1999, 1−36.
(19) Wan, Z.-K.; Choi, H. W.; Kang, F.-A.; Nakajima, K.; Demeke,
D.; Kishi, Y. Org. Lett. 2002, 4, 4431−4434. (b) Choi, H. W.;
Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi,
Y. Org. Lett. 2002, 4, 4435−4438.
REFERENCES
■
(1) (a) Chromodorolide A: Dumdei, E. J.; De Silva, E. D.;
Andersen, R. J.; Choudhary, M. I.; Clardy, J. J. Am. Chem. Soc. 1989,
111, 2712−2713. (b) Chromodorolide B: Morris, S. A.; Dilip de
Silva, E.; Andersen, R. J. Can. J. Chem. 1991, 69, 768−771. (c)
Chromodorolide C: Rungprom, W.; Chavasiri, W.; Kokpol, U.; Kotze,
A.; Garson, M. J. Mar. Drugs 2004, 2, 101−107. (d) Chromodorolides
D and E: Katavic, P. L.; Jumaryatno, P.; Hooper, J. N. A.; Blanchfield,
J. T.; Garson, M. J. Aust. J. Chem. 2012, 65, 531−538. (e)
Chromodorolide D: Uddin, M. H.; Hossain, M. K.; Nigar, M.; Roy,
M. C.; Tanaka, J. Chem. Nat. Compd. 2012, 48, 412−415.
(20) X-ray coordinates were deposited with the Cambridge
Crystallographic Data Centre: (a) 23: 1446028, (b) 24: 1446026,
and (c) 1: 1446027.
(21) Ireland, R. E.; Wrigley, T. I.; Young, W. G. J. Am. Chem. Soc.
1958, 80, 4604−4606.
(22) Generation of the dioxolane radical from the corresponding
carboxylic acid was also successful.23 However, this acid proved more
difficult to purify than the crystalline N-acyloxyphthalimide 24.
(23) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2014, 136, 10886−10889.
(24) We have thus far failed to isolate this product in pure form.
(25) This result may arise from coordination of DIBALH to the
benzyl ether, e.g., see: Jung, M. E.; Usui, Y.; Vu, C. T. Tetrahedron Lett.
1987, 28, 5977−5980.
(2) For reviews of rearranged spongian diterpenes, see: (a) Keyzers,
R. A.; Northcote, P. T.; Davies-Coleman, M. T. Nat. Prod. Rep. 2006,
23, 321−334. (b) Gonzalez, M. Curr. Bioact. Compd. 2007, 3, 1−36.
(3) Total syntheses of norissolide: (a) Brady, T. P.; Kim, S. H.; Wen,
K.; Theodorakis, E. A. Angew. Chem., Int. Ed. 2004, 43, 739−742.
(b) Brady, T. P.; Kim, S. H.; Wen, K.; Kim, C.; Theodorakis, E. A.
Chem. - Eur. J. 2005, 11, 7175−7190. (c) Granger, K.; Snapper, M. L.
Eur. J. Org. Chem. 2012, 2012, 2308−2311.
(4) Isolation: Rudi, A.; Kashman, Y. Tetrahedron 1990, 46, 4019−
4022.
(5) Total syntheses of aplyviolene: (a) Schnermann, M. J.; Overman,
L. E. J. Am. Chem. Soc. 2011, 133, 16425−16427. (b) Schnermann, M.
J.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576−9570. Effect
on Golgi structure: (c) Schnermann, M. J.; Beaudry, C.; Egorova, A.
V.; Polishchuk, R. S.; Sutterlin, C.; Overman, L. E. Proc. Natl. Acad. Sci.
̈
U. S. A. 2010, 107, 6158−6163.
(6) The cis-diol was incorporated from the outset because our early
studies in this area revealed that the stereoselectivity of dihydrox-
ylation of an alkene precursor could be problematic. See: Wang, H.;
Kohler, P.; Overman, L. E.; Houk, K. N. J. Am. Chem. Soc. 2012, 134,
16054−16058.
(7) (a) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J.
Am. Chem. Soc. 1991, 113, 9401−9402. (b) Pratsch, G.; Lackner, G. L.;
Overman, L. E. J. Org. Chem. 2015, 80, 6025−6036.
(8) van der Deen, H.; van Oeveren, A.; Kellogg, R. M.; Feringa, B. L.
Tetrahedron Lett. 1999, 40, 1755−1758.
(9) Also plausible would be a radical-polar crossover pathway in
which A/A′ is reduced to the butenolide enolate and cyclization occurs
by an SN2′ pathway. For experimental evidence that α-acyl radicals
formed from the coupling of carbon radicals, which are generated by
the Okada method, and α,β-unsaturated carbonyl compounds can be
reduced under these conditions, see ref 7b.
(10) Such selectivity is well precedented; see: Lackner, G. L.;
Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342−
15345.
(11) For reactions of 2,2-dimethyl-1,3-dioxolane trisubstituted
radicals, see: (a) Gerster, M.; Renaud, P. Synthesis 1997, 1997,
1261−1267. (b) Yamada, K.; Yamamoto, Y.; Maekawa, M.; Tomioka,
K. J. Org. Chem. 2004, 69, 1531−1534. For reactions of 2,2-dimethyl-
1,3-dioxolane disubstituted radicals, see: (c) Barton, D. H. R.; Gateau-
́
Olesker, A.; Gero, S. D.; Lacher, B.; Tachdjian, C.; Zard, S. Z.
Tetrahedron 1993, 49, 4589−4602.
(13) Alvarez-Manzaneda, E.; Chahboun, R.; Barranco, I.; Cabrera, E.;
Alvarez, E.; Lara, A.; Alvarez-Manzaneda, R.; Hmamouchi, M.; Es-
Samti, H. Tetrahedron 2007, 63, 11943−11951. (b) Paquette, L. A.;
Wang, H.-L. J. Org. Chem. 1996, 61, 5352−5357.
(14) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl.
1971, 10, 496−497.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX