E. Gebauer-Henke et al. / Journal of Catalysis 250 (2007) 195–208
207
[2] P.T. Anastas, L.B. Bartlett, M.M. Kirchhoff, T.C. Williamson, Catal. To-
day 55 (2000) 11.
[3] J. March, March’s Advanced Organic Chemistry, McGraw–Hill Ko-
gakusha, Tokyo, 1997, p. 829.
[4] V. Ponec, Appl. Catal. A 149 (1997) 27.
[5] S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation for
Organic Synthesis, Wiley, New York, 2001.
[6] P. Gallezot, D. Richard, Catal. Rev. Sci. Eng. 40 (1&2) (1998) 81.
[7] Y. Nitta, Y. Hiramatsu, T. Imanaka, J. Catal. 126 (1990) 235.
[8] Y. Nitta, K. Vero, T. Imanaka, Appl. Catal. A 56 (1989) 9.
[9] Y. Nitta, T. Kato, T. Imanaka, Stud. Surf. Sci. Catal. 78 (1993) 83.
[10] C. Ando, H. Kurokawa, H. Miura, Appl. Catal. 185 (1999) 181.
[11] M.B. Padley, C.H. Rochester, G.J. Hutchings, J. Catal. 148 (1994) 438.
[12] J.E. Bailie, C.H. Rochester, G.J. Hutchings, J. Chem. Soc. Faraday Trans.
93 (1997) 2331.
[13] J.E. Bailie, G.J. Hutchings, H.A. Abdullah, J.A. Anderson, C.H. Ro-
chester, Phys. Chem. Chem. Phys. 2 (2002) 283.
[14] E.L. Rodrigues, J.M.C. Bueno, Appl. Catal. 232 (2002) 147.
[15] E.L. Rodrigues, A.J. Marchi, C.R. Apesteguia, J.M.C. Bueno, Stud. Surf.
Sci. Catal. 130 (2000) 2087.
[16] E.L. Rodrigues, J.M.C. Bueno, Appl. Catal. 257 (2004) 201.
[17] F. Djerboua, D. Benachour, R. Touroude, Appl. Catal. 282 (2005) 123.
[18] A. Borgna, B.G. Anderson, A.M. Saib, H. Bluhm, M. Hävecker, A. Knop-
Gericke, A.E.T. Kuiper, Y. Tamminaga, J.W. Niemantsverdriet, J. Phys.
Chem. B 108 (2004) 17905.
[19] P. Mäki-Arvela, J. Hájek, T. Salmi, D.Yu. Murzin, Appl. Catal. A
292 (1&2) (2005) 1.
[20] T.B.L.W. Marinelli, S. Nabuurs, V. Ponec, J. Catal. 151 (1995) 431.
[21] A.B. da Silva, E. Jordão, M.J. Mendes, P. Fouilloux, Appl. Catal. A 148
(1997) 253.
Fig. 16. FTIR spectra of C H O on α5A: (1) “fresh” sample, (2) adsorption of
4
6
C H O at RT, (3) evacuation at RT, 10 min, (4) evacuation at RT, 30 min, (5)
4
6
◦
evacuated at 150 C.
of a partially reduced support. In our spectra, only a band at
1683 cm−1 is observed, which can be attributed to the “on-top”
η1 position, connected with high catalyst selectivity in the hy-
drogenation of α,β-unsaturated aldehydes [50,52].
4. Conclusion
[22] M. Englisch, V.S. Ranade, J.A. Lercher, J. Mol. Catal. A 121 (1997) 69.
[23] G. Neri, L. Mercadante, C. Milone, R. Pietropaolo, S. Galvano, J. Mol.
Catal. A 108 (1996) 69.
[24] B. Coq, F. Figueras, Coord. Chem. Rev. 178–180 (1998) 1753.
[25] S.E. Collins, M.A. Baltanás, J.L. Garcia Fierro, A.L. Bonivardi, J. Catal.
221 (2002) 252.
[26] F. Ammari, J. Lamotte, R. Touroude, J. Catal. 221 (2004) 32.
[27] M. Consonni, D. Jokic, D.Yu. Murzin, R. Touroude, J. Catal. 188 (1999)
165.
[28] K. Liberková, R. Touroude, J. Mol. Catal. A 180 (2002) 221.
[29] M. Abid, G. Ehret, R. Touroude, Appl. Catal. 217 (2001) 219.
[30] F. Ammari, C. Milone, R. Touroude, J. Catal. 235 (2005) 1.
[31] M. Abid, R. Touroude, Catal. Lett. 69 (2000) 139.
[32] P. Concepcion´, A. Corma, J. Silvestre-Albero, V. Franco, J.Y. Chane-
Ching, J. Am. Chem. Soc. 126 (2004) 5523.
Platinum catalysts supported on gallium oxide appear to
be very promising in the reaction of selective hydrogenation
of crotonaldehyde to crotyl alcohol. The use of gallium oxide
as a platinum support increases the C=O bond hydrogenation
significantly while maintaining high activity, whereas Pt-based
catalysts are usually reported with high selectivity but have poor
activity. The best catalytic performance (high activity and selec-
tivity) is given by the 5 wt% Pt/Ga2O3 catalyst prepared from
the chlorine-free precursor: platinum acetylacetonate supported
on α-Ga2O3. We have shown that the use of gallium oxide as
a support for platinum increases the C=O bond hydrogena-
tion selectivity considerably while maintaining high activity.
These particular properties of Pt/α-Ga2O3 catalysts are due to
the synergetic effect of the following advantages for selective
hydrogenation of carbonyl group elements:
[33] J.L. Margitfalvi, A. Tompos, I. Kolosova, J. Valyon, J. Catal. 174 (1998)
246.
[34] C. Raab, J.A. Lercher, Catal. Lett. 18 (1993) 99.
[35] F. Coloma, A. Sepulveda-Escribano, F. Rodríguez-Reinoso, Appl. Catal.
A 123 (1995) L1.
[36] A.M. Ruppert, T. Paryjczak, Appl. Catal. A 320 (2007) 80.
[37] A.B. Merlo, G.F. Santori, J. Sambeth, G.J. Siri, M.L. Caselle, O.A. Fer-
retti, Catal. Commun. 7 (2006) 204.
[38] B. Zheng, W. Hua, Y. Yue, Z. Gao, J. Catal. 232 (2005) 143.
[39] D.E. Resasco, G.L. Haller, J. Catal. 82 (1982) 279.
[40] H. Lieske, G. Lietz, H. Spindler, J. Volter, J. Catal. 81 (1993) 8.
[41] F. Le Normand, A. Borgna, T.F. Garetto, R. Apesteguia, B. Moraweck,
J. Phys. Chem. 100 (1996) 9068.
(a) surface reducibility of gallium oxide, leading to covering
(decoration) of platinum by gallium suboxides;
(b) promoting effect of gallium;
(c) regular distribution of platinum particles on α-Ga2O3 by
specific hexagonal structure of the support.
Acknowledgments
[42] M. Saito, S. Watanabe, I. Takahara, M. Inaba, K. Murata, Catal. Lett.
89 (3–4) (2003) 213.
[43] L.-P. Tiainen, P. Mäki-Arvela, A.K. Neyestanaki, T. Salmi, D.Yu. Murzin,
React. Kinet. Lett. 78 (2003) 251.
[44] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Yu. Murzin, I. Paseka,
T. Heikkilä, E. Laine, P. Laukkanen, J. Väyrynen, Appl. Catal. A 251
(2003) 385.
The authors thank Dr. Waldemar Maniukiewicz and Dr.
Joanna Bojarska for XRD analysis. This work was supported
by Grant 3 T09B 11326 (0112/T09/2004/26).
References
[45] B. Bachiller-Baeza, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Appl. Catal.
A 192 (2000) 289.
[1] R.L. Augustine, Heterogeneous Catalysis for the Synthetic Chemist,
Dekker, New York, 1996.
[46] J. Silvestre-Albero, F. Coloma, A. Sepúlveda-Escribano, F. Rodriguez-
Reinoso, Appl. Catal. A 304 (2006) 159.