Green Chemistry
Paper
spatially, the corresponding –GlcNAc unit could be cleaved
directly without resorting to deacetylation first to break the
hydrogen bond barriers. Given that oligomers were not
detected in solution, if the internal β-(1–4)-linkage was cleaved
by either means rather than the terminal linkage, the oligo-
mers were assumed to be still attached to the hydrogen bond
networks, as reflected by the GPC analysis.
Such a depolymerization process is then continued on the
outer surface until the chitin feedstock is converted comple-
tely, whereas deacetylation–depolymerization or direct depoly-
merization affords GlcN and GlcNAc monomers, respectively,
leaving the interior crystalline chitin intact. Meanwhile,
3 P. Beaney, J. Lizardi-Mendoza and M. Healy, J. Chem.
Technol. Biotechnol., 2005, 80, 145–150.
4 M. Boric, H. Puliyalil, U. Novak and B. Likozar, Green
Chem., 2018, 20, 1199–1204.
5 J. L. Shamshina, Green Chem., 2019, 21, 3974–3993.
6 N. Yan and X. Chen, Nature, 2015, 524, 155–157.
7 M. Mascal and E. B. Nikitin, ChemSusChem, 2009, 2, 859–
861.
8 M. W. Drover, K. W. Omari, J. N. Murphy and F. M. Kerton,
RSC Adv., 2012, 2, 4642–4644.
9 X. Chen, S. L. Chew, F. M. Kerton and N. Yan, Green Chem.,
2014, 16, 2204–2212.
GlcNAc could deacetylate into GlcN. The resultant glucosam- 10 Y. Wang, C. M. Pedersen, T. Deng, Y. Qiao and X. Hou,
monium dehydrates and deaminizes to HMF and subsequently
LA through rehydration.50
Bioresour. Technol., 2013, 143, 384–390.
11 S. Yu, H. Zang, S. Chen, Y. Jiang, B. Yan and B. Cheng,
Polym. Degrad. Stab., 2016, 134, 105–114.
12 X. Gao, X. Chen, J. Zhang, W. Guo, F. Jin and N. Yan, ACS
Sustainable Chem. Eng., 2016, 4, 3912–3920.
13 D. W. Rackemann and W. O. S. Doherty, Biofuels, Bioprod.
Biorefin., 2011, 5, 198–214.
14 S. M. Sen, D. M. Alonso, S. G. Wettstein, E. I. Gurbuz,
C. A. Henao, J. A. Dumesic and C. T. Maravelias, Energy
Environ. Sci., 2012, 5, 9690–9697.
15 F. D. Pileidis and M.-M. Titirici, ChemSusChem, 2016, 9,
562–582.
16 S. Li, Y. Wang, Y. Yang, B. Chen, J. Tai, H. Liu and B. Han,
Green Chem., 2019, 21, 770–774.
17 Y. Shao, K. Sun, Q. Li, Q. Liu, S. Zhang, Q. Liu, G. Hu and
X. Hu, Green Chem., 2019, 21, 4499–4511.
18 Y. Bernhard, L. Pagies, S. Pellegrini, T. Bousquet,
A. Favrelle, L. Pelinski, P. Gerbaux and P. Zinck, Green
Chem., 2019, 21, 123–128.
Conclusions
We have demonstrated a selective route to convert chitin
biomass to LA up to 67% by the catalysis of ILs. The effect of
IL structures on chitin conversion has been investigated,
whereas both acidity and the hydrogen bonding ability of ILs
exert significant influences on the yield of LA. Herein, the
N-acetyl groups of chitin construct strong intramolecular and
intermolecular hydrogen bond networks that contribute to the
integration of the crystalline structure and building up of the
barriers to shield the accessibility of glycosidic linkages with
the acidic catalyst, resulting in two approaches of deacetyla-
tion–depolymerization to GlcN and direct depolymerization to
GlcNAc. While for chitosan, strong hydrogen bond networks
are not formed due to low DA values, hence the accessibility of
acidic catalysts to chitosan was enhanced, causing the poly-
meric structure ready to fall apart and be cleaved into oligo-
mers irregularly. The demonstration of the chitin depolymeri-
zation mechanism is deemed to promote the in-depth under-
standing and thereby offer new insight into the utilization of
renewable chitin resources.
19 J. J. Bozell, Science, 2010, 329, 522–523.
20 J. Q. Bond, D. M. Alonso, D. Wang, R. M. West and
J. A. Dumesic, Science, 2010, 327, 1110–1114.
21 S. Van de Vyver, J. Thomas, J. Geboers, S. Keyzer, M. Smet,
W. Dehaen, P. A. Jacobs and B. F. Sels, Energy Environ. Sci.,
2011, 4, 3601–3610.
22 R. Weingarten, W. C. Conner and G. W. Huber, Energy
Environ. Sci., 2012, 5, 7559–7574.
23 S. G. Wettstein, D. M. Alonso, Y. X. Chong and
J. A. Dumesic, Energy Environ. Sci., 2012, 5, 8199–8203.
24 K. W. Omari, J. E. Besaw and F. M. Kerton, Green Chem.,
2012, 14, 1480–1487.
Conflicts of interest
There are no conflicts to declare.
25 Á. Szabolcs, M. Molnár, G. Dibó and L. T. Mika, Green
Chem., 2013, 15, 439–445.
Acknowledgements
26 R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers,
J. Am. Chem. Soc., 2002, 124, 4974–4975.
27 A. Brandt, J. Grasvik, J. P. Hallett and T. Welton, Green
Chem., 2013, 15, 550–583.
This project was supported by the Fundamental Research
Funds for the Central Universities (DUT18JC16).
28 C. Li and Z. K. Zhao, Adv. Synth. Catal., 2007, 349, 1847–
1850.
Notes and references
1 H. K. No, S. P. Meyers and K. S. Lee, J. Agric. Food Chem., 29 H. Zhao, J. E. Holladay, H. Brown and Z. C. Zhang, Science,
1989, 37, 575–579. 2007, 316, 1597–1600.
2 F. Shahidi and J. Synowiecki, J. Agric. Food Chem., 1991, 39, 30 R. Rinaldi, R. Palkovits and F. Schueth, Angew. Chem., Int.
1527–1532.
Ed., 2008, 47, 8047–8050.
This journal is © The Royal Society of Chemistry 2020
Green Chem., 2020, 22, 62–70 | 69