S. Verma et al. / Tetrahedron Letters 51 (2010) 6897–6900
6899
R
able substances like PEG, and recycling without loss in activity
make this method more efficient and open an avenue to explore
the potential of this cost-effective catalyst for developing many
other synthetic methodologies.
R'OC
X
O
O
PEG.TUDII (10 mol %)
0 0
NH
+
RCHO
+
H3C
R'H2N NH2
5
C
3
H C
N
H
2a-n
X
1
a-n
R'=OEt, OMe
X=O,S
Acknowledgments
2
2
2
2
2
2
2
a, R=4-ClC6H4, R'=OEt; X=O
b, R=Ph, R'=OEt; X=O
2
2
2
2
2
2
2
2
2
h, R=2-Furyl, R'=OEt; X=O
i, R=C6H5, R'=OMe; X=O
We are thankful to the Director, IIP for his kind permission to
publish these results. S.V. acknowledges the CSIR, New Delhi for
the award of his Research Fellowship. We acknowledge Dr. J. K.
Gupta for providing the TGA analysis of our samples.
c, R=4-CH3C6H4, R'=OEt; X=O
d, R=4-CH3OC6H4, R'=OEt; X=O
e, R=4-NO2C6H4, R'=OEt; X=O
f, R=2-ClC6H4, R'=OEt; X=O
g, R=CH3(CH2)2; X=O
j=R=4-NO2C6H4, R'=OMe; X=O
k, R=4-CH3OC6H4,R'=OMe; X=O
l, R=4-ClC6H4,R'=OMe; X=O
m, R=2-Furyl, R'=OMe; X=O
n, R=Ph, R'=OEt; X=S
o, R=4-CH3C6H4, R'=OEt; X=S
p, R=4-NO2C6H4, R'=OEt; X=S
References and notes
1.
Scheme 2. Biginelli condensation by using PEG.TUD II.
2010, 75, 1674; (c) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in
Organic Synthesis; Wiely-VCH: Weinhein, 2006; (d) de Meijere, A.; von
Zezschwitz, P.; Brase, S. Acc. Chem. Res. 2005, 38, 413. and references cited
therein.
groups were smoothly converted into their corresponding 3,4-
dihydropyrimidinones in excellent yields. Similarly, b-ketoesters,
such as ethyl acetoacetate and methyl acetoacetate smoothly re-
acted under these reaction conditions. Further, the use of thiourea
in place of urea afforded corresponding 3,4-dihydropyrimidinones-
2. (a) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360; Synthesis and Reactions of Biginelli
compounds, 24. Part 23: (b) Schnell, B.; Krenn, W.; Faber, K.; Kappe, C. O. J.
Chem. Soc., Perkin Trans. 1 2000, 4382.
3.
(a) Kappe, C. O. Tetrahedron 1993, 43, 6937; (b) Kappe, C. O. Acc. Chem. Res.
2000, 33, 879; (c) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
2
(1H)-thiones, which also exhibit a number of interesting biologi-
4. (a) Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.;
Swanson, B. N.; Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.; Malley, M. F. J. Med.
Chem. 1990, 33, 2629; (b) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.;
Moreland, S.; Hedberg, A.; O’Reilly, B. C. J. Med. Chem. 1991, 34, 806; (c) Cho, H.;
Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatu, M.; Ohnaka, Y.; Takechi, Y.;
Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.; Ishihara, T.;
Funahashi, K.; Satah, F.; Morita, M.; Noguchi, T. J. Med. Chem. 1989, 32,
cal activities. Use of organic solvents, such as acetonitrile and
ethanol did not enhance the reaction rates to any significant extent
and, therefore, all the experiments were carried out under solvent-
free conditions. It is worthy to mention that the reaction between
4
-chlorobenzadehyde, ethyl acetoacetate, and urea did not proceed
2
399.
5. (a) Khabazzadeh, H.; Saidi, K.; Sheibani, H. Bioorg. Med. Chem. Lett. 2008, 18,
78; (b) Jain, S. L.; Prasad, V. V. D. N.; Sain, B. Catal. Commun. 2008, 9, 499; (c)
even after 24 h in the absence of catalyst under otherwise similar
reaction conditions (Table 1, entry 1). Similarly, the use of thiourea
dioxide alone as a catalyst showed poor catalytic efficiency than
PEG.TUD II, indicating the important role of PEG support in making
the reactions faster. The reaction was found to be very slow at
room temperature, whereas, 50 °C was found to be optimum for
this reaction. Further increase in reaction temperature did not
affect the rate of the reaction to any considerable extend.
The exact mechanism of the reaction is not clear; the probable
mechanism of the reaction may involve the activation via the
strong hydrogen bonding ability of the PEG.TUD II with oxygen
of the carbonyl group as shown in Scheme 3. This activation will
be promoting the formation of acylimine intermediate by the reac-
tion of aldehyde with urea/thiourea. In analogy to the well estab-
2
Lannou, M. I.; Helion, F.; Namy, J. L. Synlett 2008, 105; (d) Suzuki, I.; Wata, Y.;
Takeda, K. Tetrahedron Lett. 2008, 49, 3238; (e) Chen, X. F.; Peng, Y. Q. Catal. Lett.
2008, 122, 310; (f) Bailey, C. D.; Houlden, C. E.; Bar, G. L. J.; Lloyd-jones, G. C.;
Booker-Milburn, K. I. Chem. Commun. 2007, 2932. and references cited therein.
. (a) Shaabani, A.; Sarvary, A.; Rahmati, A.; Rezayan, A. H. Lett. Org. Chem. 2007, 4,
6
68; (b) Peng, J.; Deng, Y. Tetrahedron Lett. 2001, 42, 5917.
7. Leia, M.; Wua, D.-D.; Weib, H.-G.; Wanga, Y.-G. Synth. Commun. 2009, 39, 475.
and references therein.
8.
(a) Stadler, A.; Kappe, C. O. J. Comb. Chem. 2001, 3, 624; (b) Li, Y. X.; Bao, W. L.
Chin. Chem. Lett. 2003, 14, 993; (c) Khrustalev, D. P. Russ. J. Gen. Chem. 2009, 79,
179.
9. (a) Kumar, H.; Parmar, A. Ultrason. Sonochem. 2008, 15, 129; (b) Zhidovinova, M.
S.; Fedorova, O. V.; Rusinov, G. L.; Ovchinnikova, I. G. Russ. Chem. Bull. Int. Ed.
2003, 52, 2527.
1
0. (a) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638; (b) Palomo, C.;
Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632; (c) Houk, K. N.; List, B. Acc.
Chem. Res. 2004, 37, 487; (d) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew.
Chem. 2007, 119, 1590; Angew. Chem., Int. Ed. 2007, 46, 1570; (e) Dalko, P. I.
Enantioselective Organocatalysis; Wiley-VCH: Weinheim, Germany, 2007; (f)
Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem. 2008, 120,
2
6
lished mechanism, the generation of acylimine intermediate is
the key step, which subsequently reacts with b-dicarbonyl
compound followed by cyclodehydration to give corresponding
6232; Angew. Chem. Int. Ed. 2008, 47, 6138.
3
,4-dihydropyrimidinones. Further studies to establish the
1
1. (a) Connon, S. J. Chem. Eur. J. 2006, 12, 5418; (b) Sohtome, Y.; Tanatani, A.;
Hashimoto, Y.; Nagasaw, K. Tetrahedron Lett. 2004, 45, 5589; (c) Takemoto, Y.
Org. Biomol. Chem. 2005, 3, 4299; (d) Taylor, M. S.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2006, 45, 1520; (e) Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org. Lett.
mechanistic pathway for the present reaction are currently under
progress.
In summary, we have developed for the first time a novel
and recyclable host–guest type PEG-embedded thiourea dioxide
2006, 8, 2901.
1
2. (a) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570;
(b) Pellissier, H. Tetrahedron 2006, 62, 2143; (c) Guillena, G.; Ramón, D. J.; Yus,
M. Tetrahedron: Asymmetry 2007, 18, 693; (d) Guo, H.-C.; Ma, J.-A. Angew.
Chem., Int. Ed. 2006, 45, 354; (e) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1; (f)
Gerencser, J.; Dorman, G.; Darvas, F. QSAR Comb. Sci. 2006, 25, 439; (g) Erkkila,
A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416.
(
PEG.TUD) organocatalysts for the efficient synthesis of 3,4-dihy-
dropyrimidinones. The key advantages, such as ease of synthesis,
fast reaction rates, use of cost effective, environmentally accept-
1
3. (a) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395; (b)
Suri, J. T.; Mitsumori, S.; Albertshofer, K.; Tanaka, F.; Barbas, C. F., III J. Org.
Chem. 2006, 71, 3822; (c) Suri, J. T.; Ramachary, D. B.; Barbas, C. F., III Org. Lett.
H2N
O
H2N
2
005, 7, 1383; (d) Storer, R. I.; MacMillan, D. W. C. Tetrahedron 2004, 60, 7705;
(
e) Casas, J.; Sundén, H.; Córdova, A. Tetrahedron Lett. 2004, 45, 6117; (f)
Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem.,
Int. Ed. 2004, 43, 2152; (g) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P.
H.-Y.; Houk, K. N. Acc. Chem. Res. 2004, 37, 558.
R
O
R
O
H2N
O
O
PEG
O
MeO
H
R'
NH
14. (a) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481; (b) Bui, T.; Barbas, F., III
Tetrahedron Lett. 2000, 41, 6951.
15. (a) Córdova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III J. Am.
Chem. Soc. 2002, 124, 1842; (b) Notz, W.; Tanaka, F.; Watanabe, S.; Chowdari, N.
S.; Turner, J. M.; Thayumanavan, R.; Barbas, C. F., III J. Org. Chem. 2003, 68, 9624;
H
N
S
NH PEG
N
R'
1
-
H2O
Me
N
H
O
-
H2O
O
O
R
H
TUD-II
Scheme 3. Plausible mechanistic pathway.
2
(
c) Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K.
Angew. Chem., Int. Ed. 2003, 42, 3677.