ACCEPTED MANUSCRIPT
7.26 (m, 4H), 7.51 (s, 1H, NH), 9.11 (s, 1H, NH); 13C NMR
(125 MHz, CDCl3); δC (ppm) = 18.79, 52.60, 57.70, 98.98,
121.23, 123.60, 127.58, 135.00, 142.60, 146.66, 152.62.
catalytic amount of GO-chitosan under solvent-free conditions. A
large number of unique properties in this catalyst have caused to
short reaction time, easy work-up procedure, high reusability of
the nanocatalyst, high atom economy, excellent yields and
environmentally benign reaction conditions. In addition, to the
best of our knowledge, this is the first report of using this
nanocomposite in the synthesis of DHPMs via MCRs.
Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-
°
tetrahydropyrimidine-5-carboxylate (4k): m.p.: 209–212 C;
IR (KBr) υmax (cm-1): 3424 (NH), 3235 (NH), 1705 (C=O), 1647
1
(C=O), 1223 (C–O), 1092 (C–N); H NMR (500 MHz, CDCl3):
Acknowledgements
δH (ppm) = 1.07 (t, J = 7.1 Hz, CH3), 2.15 (s, 3H, CH3), 3.95 (q,
J = 7.1 Hz, 2H, CH2), 5.40 (s, 1H, CH), 7.25–7.33 (m, 5H, Ar–
H), 7.74 (NH), 9.2 (NH); 13C NMR (125 MHz, CDCl3): δC
(ppm) = 13.70, 17.79, 57.70, 63.60, 100.99, 126.23, 126.60,
127.58, 135.90, 142.60, 146.60, 152.60.
The authors gratefully acknowledge the partial support from
the Research Council of the Iran University of Science and
Technology.
Supporting Information
Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate (4l): m.p.: 207–209 °C; IR
(KBr) υmax (cm-1): 3424 (NH), 3235 (NH), 1707 (C=O), 1645
Electronic Supplementary Information includes copies of the
1H and 13C NMR analysis of the prepared products.
1
(C=O), 1225 (C–O), 1095 (C–N); H NMR (500 MHz, CDCl3):
δH (ppm) = 1.17 (t, J = 7.1 Hz, 3H), 2.33 (s, 3H), 3.78 (s, 3H),
4.45 (q, J = 7.1 Hz, 2H), 5.41 (d, 1H), 5.65 (s, 1H, NH), 6.18 (d, J
= 3.5 Hz, 2H), 7.22 (d, J = 7.1 Hz, 2H), 7.74 (s, 1H, NH), 13C
NMR (125 MHz, CDCl3): δC (ppm) =14.60, 18.79, 52.60, 57.70,
60.79, 108.99, 121.23, 123.60, 127.28, 135.00, 142.60, 146.60,
162.60.
References
[1] Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083.
[2] Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S.
L.; Mitchison, T. J. Science 1999, 286, 971.
[3] Maliga, Z.; Kapoor, T. M.; Mitchison, T. J. Chem. Biol. 2002, 9, 989.
[4] Timoshenko, V. M. Arkivoc 2014, 6, 86.
[5] Zhang, Q.; Wang, X.; Li, Z.; Wu, W.; Liu, J.; Wu, H.; Cui, S.; Guo, K.
RSC Adv. 2014, 4, 19710.
[6] Kolvari, E.; Koukabi, N.; Armandpour, O. Tetrahedron 2014, 70, 1383.
[7] Karthikeyan, P.; Aswar, S. A.; Muskawar, P. N.; Bhagat, P. R.; Senthil
Kumar, S. J. Org. Chem. 2013, 723, 154.
Ethyl 4-(4-methylphenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate (4m): m.p.: 216–218 C;
°
IR (KBr) υmax (cm-1): 3421 (NH), 3234 (NH), 1709 (C=O), 1646
(C=O), 1227 (C–O), 1095 (C–N); 1H NMR (500 MHz, CDCl3):
δH (ppm) = 1.17 (t, J = 7.1 Hz, 3H), 1.97 (s, 3H), 2.33 (s, 3H),
4.07 (q, J = 7.1 Hz, 2H), 5.41 (d, J = 3.5 Hz, 1H), 5.65 (s, 1H,
NH), 6.18 (d, J = 7.1 Hz, 2H), 7.25 (d, J = 7.1 Hz, 2H), 7.74 (brs,
1H, NH); 13C NMR (125 MHz, CDCl3): δC (ppm) =14.00, 15.99,
52.50, 57.75, 60.79, 105.09, 121.53, 123.65, 127.58, 135.50,
140.60, 146.60, 160.65.
[8] Shockravi, A.; Kamali, M.; Sharifi, N.; Nategholeslam, M.; Moghanlo, S.
P. Synth. Commun. 2012, 4, 1477.
[9] Safari, J.; Gandomi-Ravandi, S. J. Mol. Struct. 2014, 1065–1066, 241.
[10]Qiu, Y.; Sun, H.; Ma, Z.; Xia, W. J. Mol. Catal. A: Chem. 2014, 392, 76.
[11]Narkhede, N.; Patel, A. J. Por. Mater. 2014, 21, 579.
[12]Xu, Z.; Jiang, Y.; Zou, S.; Liu, Y. Phosphorus, Sulfur Silicon Relat.
Elem. 2014, 189, 791.
[13]Jetti, S. R.; Upadhyaya, A.; Jain, S. Med. Chem. Res. 2014, 23, 4356.
[14]Jetti, S. R.; Bhatewara, A.; Kadre, T.; Jain, S. Chin. Chem. Lett. 2014,
25, 469.
[15]Zarnegar, Z.; Safari, J. J. Nanopart. Res. 2014, 16, 2509.
[16]Jadhav, S.; Anandgaonker, P. L.; Kulkarni, G.; Gaikwad, S. T.; Rajbhoj,
A. S. J. Cluster Sci. 2014, 25, 1389.
[17]Prakash, G. K. S.; Lau, H.; Panja, C.; Bychinskaya, I.; Ganesh, S. K.;
Zaro, B.; Mathew, T.; Olah, G. A. Catal. Lett. 2014, 144, 2012.
[18]Pramanik, M.; Bhaumik, A. ACS Appl. Mater. Interfaces 2014, 6, 933.
[19]Kiyani, H.; Ghiasi, M. Res. Chem. Intermed. 2014, DOI:
10.1007/s11164-014-1766-7.
Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-
°
tetrahydropyrimidine-5-carboxylate (4n): m.p.: 238–239 C;
IR (KBr) υmax (cm-1): 3586 (OH), 3428 (NH), 3233 (NH), 1713
1
(C=O), 1649 (C=O), 1220 (C–O), 1092 (C–N); H NMR (500
MHz, CDCl3): δH (ppm) = 1.79 (t, J = 7.1 Hz, 3H, CH3), 3.94 (q,
J = 7.1 Hz, 2H, CH2), 5.40 (s, 1H, CH), 7.25–7.33 (m, 5H, Ar–
H), 7.74 (NH), 9.20 (NH), 9.40 (OH); 13C NMR (125 MHz,
CDCl3): δC (ppm) = 13.50, 17.79, 57.70, 63.60, 100.99, 117.58,
126.60, 127.58 135.90, 142.60, 146.60, 152.60.
[20]Thorat, P. B.; Waghmode, N. A.; Karade, N. N. Tetrahedron Lett. 2014,
55, 5718.
[21]Safari, J.; Zarnegar, Z. RSC Adv. 2013, 3, 17962.
[22]Wang, A.; Liu, X.; Su, Z.; Jing, H. Catal. Sci. Tech. 2014, 4, 71.
[23]Poliakoff, M.; Licence, P. Nature 2007, 450, 810.
[24]Maleki, A.; Paydar, R. RSC Adv. 2015, 5, 33177.
[25]Maleki, A.; Movahed, H.; Paydar, R. RSC Adv. 2016, 6, 13657.
[26]Maleki, A. Tetrahedron 2012, 68, 7827.
Ethyl 4-(3-nitrophenyl)-6-methyl-2-oxo-1,2,3,4-
°
tetrahydropyrimidine-5-carboxylate (4o): m.p.: 233–234 C;
IR (KBr) υmax (cm-1): 3424 (NH), 3235 (NH), 1705 (C=O), 1647
1
(C=O), 1223 (C–O), 1092 (C–N); H NMR (500 MHz, CDCl3):
[27]Maleki, A. Tetrahedron Lett. 2013, 54, 2055.
δH (ppm) = 1.09 (t, J = 7.1 Hz, 3H), 2.16 (s, 3H, CH3), 3.94 (q, J
= 7.1 Hz, 2H, CH2), 6.12 (d, J = 3.4 Hz, 1H), 7.16–7.33 (m, 5H,
Ar–H), 7.74 (NH), 9.2 (NH); 13C NMR (125 MHz, CDCl3): δC
(ppm) = 14.00, 15.99, 52.50, 60.79, 105.09, 121.53, 123.65,
127.58, 132.00, 132.50, 135.50, 140.60, 146.60, 160.65.
[28]Maleki, A.; Kamalzare, M. Catal. Commun. 2014, 53, 67.
[29]Maleki, A.; Akhlaghi, E.; Paydar, R. Appl. Organomet. Chem. 2016, 30,
382.
[30] Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.;
Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4,
4806.
[31]El-Kady, M. F.; Kaner, R. B. ACS Nano 2014, 8, 8725.
[32]Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Electroanalysis
2010, 22, 1027.
[33]Dhand, V.; Rhee, K. Y.; Ju Kim, H.; Ho Jung, D. J. Nanomaterial 2013,
DOI: 10.1155/2013/763953.
4. Conclusion
In summary, we have introduced GO-chitosan nanocomposite
as
a
biocompatible and biodegradable heterogeneous
[34]Kucinskis, G.; Bajars, G.; Kleperis, J. J. Power Sources 2013, 240, 66.
[35]Zhang, X.; Zhang, H.; Li, C.; Wang, K.; Sun, X.; Ma, Y. RSC Adv. 2014,
4, 45862.
[36]Cataldo, S.; De Stefano, C.; Gianguzza, A.; Piazzese, D.; Sammartano, S.
Chem. Spec. Bioavailab. 2009, 21, 81.
nanocatalyst applicable in the organic synthesis. Then, efficient
synthesis of 3,4-dihydropyrimidin-2(1H)-one were carried out
starting from simple and readily available precursors including
benzaldehydes, 1,3-ketoesters and urea in the presence of a