Journal of the American Chemical Society
Page 4 of 6
(1) (a) Miyaura, N.; Suzuki, A., Palladium-Catalyzed Cross-Coupling
Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457-2483;
(b) Suzuki, A., Cross-Coupling Reactions Of Organoboranes: An Easy Way
To Construct C-C Bonds (Nobel Lecture). Angew. Chem. Int. Ed. 2011, 50,
6722-6737.
(2) Matteson, D. S.; Mah, R. W. H., Neighboring Boron in Nucleophilic
Displacement. J. Am. Chem. Soc. 1963, 85, 2599-2603.
(3) Leonori, D.; Aggarwal, V. K., Lithiation–Borylation Methodology and
Its Application in Synthesis. Acc. Chem. Res. 2014, 47, 3174-3183.
(4) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C., A general,
modular method for the catalytic asymmetric synthesis of alkylboronate
esters. Science 2016, 354, 1265-1269.
1
2
3
4
5
6
7
8
9
(5) (a) Newhouse, T.; Baran, P. S., If CH Bonds Could Talk: Selective C-
H Bond Oxidation. Angew. Chem. Int. Ed. 2011, 50, 3362-3374; (b)
Yamaguchi, J.; Yamaguchi, A. D.; Itami, K., C-H Bond Functionalization:
Emerging Synthetic Tools for Natural Products and Pharmaceuticals.
Angew. Chem. Int. Ed. 2012, 51, 8960-9009; (c) White, M. C., Adding
Aliphatic C–H Bond Oxidations to Synthesis. Science 2012, 335, 807-809.
(6) (a) Aparece, M. D.; Gao, C.; Lovinger, G. J.; Morken, J. P.,
Vinylidenation of Organoboronic Esters Enabled by a Pd-Catalyzed
Metallate Shift. Angew. Chem. Int. Ed. 2019, 58, 592-595; (b) Myhill, J. A.;
Zhang, L.; Lovinger, G. J.; Morken, J. P., Enantioselective Construction of
Tertiary Boronic Esters by Conjunctive Cross-Coupling. Angew. Chem. Int.
Ed. 2018, 57, 12799-12803; (c) Myhill, J. A.; Wilhelmsen, C. A.; Zhang,
L.; Morken, J. P., Diastereoselective and Enantioselective Conjunctive
Cross-Coupling Enabled by Boron Ligand Design. J. Am. Chem. Soc. 2018,
140, 15181-15185; (d) Lovinger, G. J.; Morken, J. P., Ni-Catalyzed
Enantioselective Conjunctive Coupling with C(sp3) Electrophiles: A
Radical-Ionic Mechanistic Dichotomy. J. Am. Chem. Soc. 2017, 139,
17293-17296; (e) Lovinger, G. J.; Aparece, M. D.; Morken, J. P., Pd-
Catalyzed Conjunctive Cross-Coupling between Grignard-Derived Boron
“Ate” Complexes and C(sp2) Halides or Triflates: NaOTf as a Grignard
Activator and Halide Scavenger. J. Am. Chem. Soc. 2017, 139, 3153-3160;
(f) Edelstein, E. K.; Namirembe, S.; Morken, J. P., Enantioselective
Conjunctive Cross-Coupling of Bis(alkenyl)borates: A General Synthesis
of Chiral Allylboron Reagents. J. Am. Chem. Soc. 2017, 139, 5027-5030;
(g) Chierchia, M.; Law, C.; Morken, J. P., Nickel-Catalyzed
Enantioselective Conjunctive Cross-Coupling of 9-BBN Borates. Angew.
Chem. Int. Ed. 2017, 56, 11870-11874; (h) Zhang, L.; Lovinger, G. J.;
Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P.,
Catalytic conjunctive cross-coupling enabled by metal-induced metallate
rearrangement. Science 2016, 351, 70-74.
(7) (a) Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A.,
Radical-polar crossover reactions of vinylboron ate complexes. Science
2017, 355, 936-938; (b) Das, S.; Daniliuc, C. G.; Studer, A., Lewis Acid
Catalyzed Stereoselective Dearomative Coupling of Indolylboron Ate
Complexes with Donor–Acceptor Cyclopropanes and Alkyl Halides.
Angew. Chem. Int. Ed. 2018, 57, 4053-4057; (c) Gerleve, C.; Kischkewitz,
M.; Studer, A., Synthesis of alpha-Chiral Ketones and Chiral Alkanes Using
Radical Polar Crossover Reactions of Vinyl Boron Ate Complexes. Angew.
Chem. Int. Ed. 2018, 57, 2441-2444; (d) Kischkewitz, M.; Gerleve, C.;
Studer, A., Radical-Polar Crossover Reactions of Dienylboronate
Complexes: Synthesis of Functionalized Allylboronic Esters. Org. Lett.
2018, 20, 3666-3669.
(8) (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K.,
Enantiodivergent conversion of chiral secondary alcohols into tertiary
alcohols. Nature 2008, 456, 778; (b) Burns, M.; Essafi, S.; Bame, J. R.;
Bull, S. P.; Webster, M. P.; Balieu, S.; Dale, J. W.; Butts, C. P.; Harvey, J.
N.; Aggarwal, V. K., Assembly-line synthesis of organic molecules with
tailored shapes. Nature 2014, 513, 183; (c) Rasappan, R.; Aggarwal, V. K.,
Synthesis of hydroxyphthioceranic acid using a traceless lithiation–
borylation–protodeboronation strategy. Nat. Chem. 2014, 6, 810; (d)
Sandford, C.; Rasappan, R.; Aggarwal, V. K., Synthesis of Enantioenriched
Alkylfluorides by the Fluorination of Boronate Complexes. J. Am. Chem.
Soc. 2015, 137, 10100-10103; (e) Bootwicha, T.; Feilner, J. M.; Myers, E.
L.; Aggarwal, V. K., Iterative assembly line synthesis of polypropionates
with full stereocontrol. Nat. Chem. 2017, 9, 896; (f) Silvi, M.; Sandford, C.;
Aggarwal, V. K., Merging Photoredox with 1,2-Metallate Rearrangements:
The Photochemical Alkylation of Vinyl Boronate Complexes. J. Am. Chem.
Soc. 2017, 139, 5736-5739; (g) Fawcett, A.; Biberger, T.; Aggarwal, V. K.,
Carbopalladation of C–C σ-bonds enabled by strained boronate complexes.
Nat. Chem. 2019, 11, 117-122.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Figure 1. DFT studies. Transition states, activation barriers and
free energies of hydrogen atom transfer of phenyl isopropyl boron-
ate complex (left) and ethyl benzene (right) with the CF3-radical.
Finally, we studied the initiation step of the cascade and found
the trifluoromethyl iodide to be efficiently reduced by the
photoexcited Ir-complex, as analyzed by Stern-Volmer quenching
(Supporting Information). As an alternative initiation step, the
boron ate complex can be oxidized by the photoexcited Ir-complex,
albeit less efficiently. The quantum yield of the process22 was
determined to be 8.8, showing that the Ir-complex mainly acts to
initiate the radical chain (see Scheme 1d) and is best described as a
smart initiator.15 This is in line with the observation that various
organic and inorganic redox systems initiate the chain with similar
efficiency and that initiation also proceeds in the absence of any
photocatalyst. For reactions run without any smart redox initiator,
initiation likely proceeds by direct reduction of the CF3I/DMSO
complex with the boron-ate complex upon irradiation.
We are confident that the herein introduced radical CC
couplings will significantly enlarge the portfolio of boron
chemistry. The starting materials are easily accessed and special
equipment is not required to run these valuable sequences.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website at DOI: xxx.
Experimental details and characterization data (PDF)
NMR spectrum of new compounds (PDF)
DFT calculations (PDF)
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank the Alexander von Humboldt foundation
(postdoctoral fellowship to D.W.) and the European Research
Council ERC (advanced grant agreement No. 692640) for
supporting this work.
(9) (a) Panda, S.; Ready, J. M., Palladium Catalyzed Asymmetric Three-
Component Coupling of Boronic Esters, Indoles, and Allylic Acetates. J.
Am. Chem. Soc. 2017, 139, 6038-6041; (b) Panda, S.; Ready, J. M., Tandem
REFERENCES
ACS Paragon Plus Environment