Table 1 Thioetherification of different aryl halides (Br, Cl) in aqueous
medium over Cu-F-SBA-15 using thiourea
suggests the future potential application of this catalytic system
for the synthesis of different unsymmetrical aryl alkyl thioethers.
Time
Notes and references
À1
Entry Aryl Halides (h)
Product
Yield(%) TOF(h
)
1
(a) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire,
Chem. Rev., 2002, 102, 1359–1469; (b) J.-P. Corbet and
G. Mignani, Chem. Rev., 2006, 106, 2651–2710.
1
2
3
4
5
6
7
12
10
12
12
11
12
10
82
88
86
85
85
82
84
87.2
112.3
91.5
2
(a) G. Liu, J. R. Huth, E. T. Olejniczak, R. Mendoza, P. DeVries.,
S. Leitza E. B. Reilly, G. F. Okasinski, E. Nielsen, S. W. Fesik and
T. W. von Geldern, J. Med. Chem., 2001, 44, 1202–1210; (b) S. F
Nielsen, E. O. Nielsen, G. M. Olsen, T. Liljefors and D. Peters,
J. Med. Chem., 2000, 43, 2217–2226.
A. Thuillier and P. Metzner, Sulfur Reagents in Organic Synthesis,
Academic Press, New York, NY, 1994.
(a) T. Kondo and T. Mitsudo, Chem. Rev., 2000, 100, 3205–3220;
3
4
90.4
(
b) K. L. Billingsley, T. E. Barder and S. L. Buchwald, Angew.
98.6
Chem., Int. Ed., 2007, 46, 5359–5363; (c) M. Carril, A. Correa and
C. Bolm, Angew. Chem., Int. Ed., 2008, 47, 4862–4865.
(a) L. E. Overman, Chem. Rev., 2003, 103, 2945–2963; (b) B. M. Trost,
X. J. Luan and Y. Miller, J. Am. Chem. Soc., 2011, 133, 12824–12833.
M. A. Fernandez-Rodriguez, Q. Shen and J. F. Hartwig, J. Am.
Chem. Soc., 2006, 128, 2180–2181.
(a) C. Gonzalez-Arellano, R. Luque and D. J. Macquarrie, Chem.
Commun., 2009, 1410–1412; (b) J. Mondal, A. Modak, A. Dutta and
A. Bhaumik, Dalton Trans., 2011, 40, 5228–5235; (c) S.-W. Cheng,
M.-C. Tseng, K.-H. Lii, C.-R. Lee and S.-G. Shyu, Chem. Commun.,
5
6
7
87.2
107.2
8
12
81
86.2
2
011, 47, 5599–5601.
9
1
1
1
10
12
12
12
80
86
84
83
102.1
91.5
89.3
88.3
8
9
V. Percec, J. Y. Bae and D. H. Hill, J. Org. Chem., 1995, 60, 6895.
(a) Y. C. Wong, T. T. Jayanth and C. H. Cheng, Org. Lett., 2006,
8
Commun., 2009, 4450–4452.
0 P. Anastas and J. C. Warner, Green Chemistry: Theory and
Practice, Oxford University Press, Oxford, 1998.
1 H. Firouzabadi, N. Iranpoor, M. Jafarpour and A. Ghaderi,
J. Mol. Catal. A: Chem., 2006, 249, 98–102.
, 5613–5616; (b) J. R. Wu, C. H. Lin and C. F. Lee, Chem.
0
1
2
1
1
1
2 R. S. Schwab, D. Singh, E. E. Alberto, P. Piquini, O. E. D. Rodrigues
and A. L. Braga, Catal. Sci. Technol., 2011, 1, 569–573.
1
1
3 N. E. Leadbeater, Chem. Commun., 2005, 2881–2902.
4 (a) P. A. Grieco, Organic Synthesis in Water, Blackie, London,
13
12
80
85.1
1
998; (b) R. N. Butler and A. G. Coyne, Chem. Rev., 2010, 110,
1
1
4
5
12
10
82
81
87.2
6302–6337; (c) J. Mondal, A. Modak and A. Bhaumik, J. Mol.
Catal. A: Chem., 2011, 350, 40–48.
103.4
15 H. Firouzabadi, N. Iranpoor and M. Abbasi, Adv. Synth. Catal.,
009, 351, 755–766.
2
1
6 H. Firouzabadi, N. Iranpoor and M. Gholinejad, Adv. Synth.
Catal., 2010, 352, 119–124.
17 (a) S. Jana, B. Dutta, R. Bera and S. Koner, Langmuir, 2007, 23,
acetate and then finally with acetone. It was then dried under air
overnight and used in the next cycle. It was observed that the
catalyst can be recycled for six consecutive cycles (ESIw, S13)
without significant loss in catalytic activity. On the other hand,
a control experiment with homogeneous phase catalysts
2
2
2
492–2496; (b) W. Zhou, Y. M. Li and D. H. He, Appl. Catal., A,
010, 377, 114–120; (c) Y. Yang and R. M. Rioux, Chem. Commun.,
011, 47, 6557–6559.
18 S. S. Park, J. H. Shin, D. Y. Zhao and C. S. Ha, J. Mater. Chem.,
010, 20, 7854–7858.
9 (a) C. del Pozo, A. Corma, M. Iglesias and F. Sanchez, Organometallics,
010, 29, 4491–4498; (b) E. V. Dikarev, D. K. Kumar, A. S. Filatov,
2
1
Cu(OAc)
2
ÁH
2
O, SBA-15-supported Cu nanocatalyst, pure
2
SBA-15 and furfural-SBA-15 (Table S3, ESIw), showed very poor
yields under these conditions. The plausible reaction pathway
A. Anan, Y. W. Xie, T. Asefa and M. A. Petrukhina, ChemCatChem,
2010, 2, 1461–1466; (c) S. Y. Chen, T. Yokoi, C. Y. Tang, L. Y. Jang,
T. Tatsumi, J. C. C. Chan and S. F. Cheng, Green Chem., 2011, 13,
16
could be the same as that suggested by Firouzabadi et al. Thus,
our experimental results suggest that Cu-F-SBA-15 is an efficient
and recyclable heterogeneous catalyst for one-pot thioetherification
reaction in aqueous medium for the synthesis of aryl thioethers.
In conclusion, we have developed a novel protocol for one-pot
thioetherification of different aryl halides with thiourea and benzyl
2920–2930; (d) A. Modak, J. Mondal, M. Sasidharan and A. Bhaumik,
Green Chem., 2011, 13, 1317–1331; (e) J. R. Cabrero-Antonino,
T. Garcia, P. Rubio-Marques, J. A. Vidal-Moya, A. Leyva-Perez,
S. S. Al-Deyab, S. I. Al-Resayes, U. Diaz and A. Corma, ACS Catal.,
2011, 1, 147–158.
2
0 A. C. C. Chang, S. S. C. Chuang, M. Gary and Y. Soong, Energy
Fuels, 2003, 17, 468–473.
bromide in the presence of K CO
2
3
base in water medium at 100 1C
21 M. Nandi, R. Gongopadhyay and A. Bhaumik, Microporous
Mesoporous Mater., 2008, 109, 239–247.
over a furfural imine-functionalized Cu-grafted mesoporous
SBA-15 heterogeneous catalyst. This procedure is free from
foul-smelling thiols and work-up becomes easy, practical and
eco-compatible, diminishing environmental concerns. Commercially
available aryl halides make this procedure much easier than using
corresponding thiols via in situ generation of thiolate ions. The
high catalytic efficiency of the Cu-anchored SBA-15 catalyst
2
2
2 M. H. Lim and A. Stein, Chem. Mater., 1999, 11, 3285–3295.
3 M. Nandi, J. Mondal, K. Sarkar, Y. Yamauchi and A. Bhaumik,
Chem. Commun., 2011, 47, 6677–6679.
24 (a) Z. Wang, Q. Liu, J. Yu, T. Wu and G. Wang, Appl. Catal., A,
003, 239, 87–94; (b) Y.-C. Fang, H.-C. Lin, I.-J. Hsu, T.-S. Lin
2
and C.-Y. Mou, J. Phys. Chem. C, 2011, 115, 20639–20652.
5 S. T. Wong, C. H. Lee, T. S. Lin and C. Y. Mou, J. Catal., 2004,
228, 1–11.
2
8
002 Chem. Commun., 2012, 48, 8000–8002
This journal is c The Royal Society of Chemistry 2012