5792
Organometallics 2005, 24, 5792-5794
Syntheses and Structures of the Trinuclear Ruthenium
Complexes [RuCl2(PAd2Bu)]3 and [RuCl2(PtBu2Cy)]3
Se´bastien Gauthier, Rosario Scopelliti, and Kay Severin*
Institut des Sciences et Inge´nierie Chimiques, EÄ cole Polytechnique Fe´de´rale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
Received July 29, 2005
Scheme 1
Summary: The trinuclear ruthenium complexes [RuCl2-
(PAd2Bu)]3 and [RuCl2(PtBu2Cy)]3 have been obtained
by reaction of [(cymene)RuCl2]2 with 2 equiv of the
respective phosphine. Crystallographic analyses show
that the three metal fragments are connected by strong
Ru-Ru bonds and bridging chloro ligands.
Neutral ruthenium(II) chloro complexes with mono-
dentate phosphine ligands are key starting materials
in organometallic synthesis1,2 and catalysis.2,3 With
small phosphine ligands such as PMe3,4 PMe2(CH2Ph),5
and PMe2Ph,6 electronically saturated complexes of the
formula [RuCl2L4] (L ) PR3, PR2R′) (A) can be obtained
(Scheme 1). The 16-electron complexes [RuCl2L3] (C) are
formed with sterically more demanding ligands such as
PPh3,2 P(p-C6H4CH3)3,7 and PEtPh2.6 In solution, com-
plexes with the latter ligand are in equilibrium with the
dimer [Ru2Cl4(PEtPh2)5] (B).6 Complexes of the formula
RuCl2L2 (D) tend to dimerize via chloro bridges.8 Using
the ortho-methyl-substituted phosphine ligand PPh2-
(2,6-Me2C6H3), however, it was possible to stabilize a
monomeric 14-electron complex of type D.9 In this case,
two agostic interactions between the methyl groups and
the ruthenium center were observed. The formal re-
moval of another phosphine ligand would lead to the
hypothetical 12-electron complexes RuCl2L (E). These
complexes are expected to form aggregates in order to
increase the coordination number of the metal, but to
the best of our knowledge, complexes of the type
[RuCl2L]n have not been described so far. In the follow-
ing, we report the synthesis and the structures of two
first examples of this class of compounds.
When sterically demanding phosphine ligands are em-
ployed, the arene π-ligand can subsequently be cleaved
off by photochemical or thermal activation. The result-
ing ruthenium complexes have been employed as cata-
lysts for ring-closing11 and ring-opening olefin meta-
thesis reactions12 as well as for atom transfer radical
addition13 and polymerization reactions.14 So far, there
is only very limited knowledge about what type of
complexes are formed after cleavage of the π-ligand.
When 1 equiv of PCy3 was employed with respect to the
dimer [(arene)RuCl2]2, only a partial replacement of the
arene was observed and binuclear complexes of the
formula [(arene)Ru(µ-Cl)3RuCl(L)(PCy3)] (L ) µ-N2 or
η2-C2H4) were obtained.13,14a
In continuation of these studies, we have investi-
gated the reaction of [(cymene)RuCl2]215 with the steri-
cally very demanding phosphine ligands PAd2Bu and
PtBu2Cy. These ligands are commercially available16
The chloro-bridged complexes [(arene)RuCl2]2 are
known to react with PR3 ligands to give monomeric
adducts of the general formula [(arene)RuCl2(PR3)].10
(10) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974,
233-241.
(11) (a) Fu¨rstner, A.; Mu¨ller, T. J. Am. Chem. Soc. 1999, 121, 7814-
7821. (b) Fu¨rstner, A.; Ackermann, L. Chem. Commun. 1999, 95-96.
(12) (a) Baran, J.; Bogdanska, I.; Jan, D.; Delaude, L.; Demonceau,
A.; Noels, A. F. J. Mol. Catal. A 2002, 190, 109-116. (b) Jan, D.;
Delaude, L.; Simal, F.; Demonceau, A.; Noels, A. F. J. Organomet.
Chem. 2000, 606, 55-64. (c) Hafner, A.; Mu¨hlebach, A.; van der Schaaf,
P. A. Angew. Chem., Int. Ed. Engl. 1997, 36, 2121-2124. (d) Demon-
ceau, A.; Stumpf, A. W.; Saive, E.; Noels, A. F. Macromolecules 1997,
30, 3127-3136. (e) Stumpf, A. W.; Saive, E.; Demonceau, A.; Noels, A.
F. J. Chem. Soc., Chem. Commun. 1995, 1127-1128. (f) Demonceau,
A.; Noels, A. F.; Saive, E.; Hubert, A. J. J. Mol. Catal. 1992, 76, 123-
132.
(1) Schro¨der, M.; Stephenson, T. A. In Comprehensive Coordination
Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.;
Pergamon Press: Oxford, 1987; Vol. 4, p 377.
(2) Jardine, F. H. Prog. Inorg. Chem. 1984, 31, 265-370.
(3) (a) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98,
2599-2660. (b) Bennett, M. A.; Matheson, T. W. In Comprehensive
Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W.,
Eds.; Pergamon Press: Oxford, 1982; Vol. 4, p 931.
(4) (a) Holmes, N. J.; Levason, W.; Webster, M. J. Chem. Soc., Dalton
Trans. 1997, 4223-4229. (b) Jones, R. A.; Real, F. M.; Wilkinson, G.;
Galas, A. M.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton
Trans. 1980, 511-518. (c) Singer, H.; Hademer, E.; Oehmichen, U.;
Dixneuf, P. J. Organomet. Chem. 1979, 178, C13-C16.
(5) Bennett, R. L.; Bruce, M. I.; Stone, F. G. A. J. Organomet. Chem.
1972, 38, 325-334.
(13) Quebatte, L.; Solari, E.; Scopelliti, R.; Severin, K. Organome-
tallics 2005, 24, 1404-1406.
(14) (a) Quebatte, L.; Haas, M.; Solari, E.; Scopelliti, R.; Nguyen,
Q. T.; Severin K. Angew. Chem., Int. Ed. 2005, 44, 1084-1088. (b)
Simal, F.; Jan, D.; Delaude, L.; Demonceau, A.; Spirlet, M.-R.; Noels,
A. F. Can. J. Chem. 2001, 79, 529-535. (c) Simal, F.; Sebille, S.; Hallet,
L.; Demonceau, A.; Noels, A. F. Macromol. Symp. 2000, 161, 73-85.
(d) Simal, F.; Jan, D.; Demonceau, A.; Noels A. F. In Controlled/Living
Radical Polymerization; Matyjaszwski, K., Ed.; ACS Symposium Series
768; ACS: Washington, 2000; Chapter 16. (e) Simal, F.; Demonceau,
A.; Noels, A. F. Angew. Chem., Int. Ed. 1999, 38, 538-540.
(15) Bennett, M. A.; Huang, T.-N.; Matheson, T. W.; Smith, A. K.
Inorg. Synth. 1982, 21, 74-78.
(6) Armit, P. W.; Boyd, A. S. F.; Stephenson, T. A. J. Chem. Soc.,
Dalton Trans. 1975, 1663-1672.
(7) Knoth, W. H. J. Am. Chem. Soc. 1972, 94, 104-109.
(8) Hoffman, P. R.; Caulton, K. G. J. Am. Chem. Soc. 1975, 97,
4221-4228.
(9) Baratta, W.; Herdtweck, E.; Rigo, P. Angew. Chem., Int. Ed.
1999, 38, 1629-1631.
10.1021/om050649i CCC: $30.25 © 2005 American Chemical Society
Publication on Web 10/27/2005