FULL PAPER
H), 2.36 (s, 3 H) ppm. 13C NMR (126 MHz, [D6]DMSO): δ =
[4]
a) M. Göbel, K. Karaghiosoff, T. M. Klapötke, D. G. Piercey,
J. Stierstorfer, J. Am. Chem. Soc. 2010, 132, 17216–17226; b)
N. Fischer, D. Izsak, T. M. Klapötke, J. Stierstorfer, Chem. Eur.
J. 2013, 19, 8948–8957; c) Y.-H. Joo, J. M. Shreeve, Angew.
Chem. 2009, 121, 572; Angew. Chem. Int. Ed. 2009, 48, 564–
567.
a) A. A. Dippold, T. M. Klapötke, J. Am. Chem. Soc. 2013,
135, 9931–9938; b) T. M. Klapötke, C. M. Sabate, Eur. J. Inorg.
Chem. 2008, 5350–5366; c) A. A. Dippold, T. M. Klapötke,
F. A. Martin, S. Wiedbrauk, Eur. J. Inorg. Chem. 2012, 2429–
2443.
a) H. F. Huang, Z. M. Zhou, L. X. Liang, J. H. Song, K.
Wang, D. Cao, W. W. Sun, C. M. Bian, M. Xue, Chem. Asian
J. 2012, 7, 707–714; b) L. X. Liang, H. F. Huang, K. Wang,
C. M. Bian, J. H. Song, L. M. Ling, F. Q. Zhao, Z. M. Zhou,
J. Mater. Chem. 2012, 22, 21954–21964.
a) T. M. Klapötke, F. A. Martin, J. Stierstorfer, Chem. Eur. J.
2012, 18, 1487–1501; b) J. C. Galvez-Ruiz, G. Holl, K. Kar-
aghiosoff, T. M. Klapötke, K. Lohnwitz, P. Mayer, H. Noth,
K. Polborn, C. J. Rohbogner, M. Suter, J. J. Weigand, Inorg.
Chem. 2005, 44, 4237–4253; c) Y.-H. Joo, B. Twamley, S. Garg,
J. M. Shreeve, Angew. Chem. 2008, 120, 6332–6335; d) Y.-H.
Joo, B. Twamley, J. M. Shreeve, Chem. Eur. J. 2009, 15, 9097–
9104; e) F. Li, X. M. Cong, Z. M. Du, C. L. He, L. S. Zhao,
L. Q. Meng, New J. Chem. 2012, 36, 1953–1956; f) Y. X. Tang,
H. W. Yang, J. H. Shen, B. Wu, X. H. Ju, C. X. Lu, G. B.
Cheng, Angew. Chem. Int. Ed. 2013, 52, 4875–4877.
a) V. P. Sinditskii, A. V. Burzhava, A. B. Sheremetev, N. S.
Aleksandrova, Propellants Explos. Pyrotech. 2010, 37, 575–580;
b) I. N. Zyuzin, K. Y. Suponitsky, A. B. Sheremetev, J. Hetero-
cycl. Chem. 2012, 49, 561–565; c) E. G. Francois, D. E. Chavez,
M. M. Sandstrom, Propellants Explos. Pyrotech. 2010, 35, 529–
534; d) L. X. Wang, X. L. Tuo, C. H. Yi, H. T. Zou, J. Xu,
W. L. Xu, J. Mol. Graphics Modell. 2009, 28, 81–87.
a) J. P. Agrawal, High energy materials, Propellants, Explosives
and Pyrotechnics, Wiley-VCH, Weinheim, Germany, 2010, p.
100–102; b) C. Zhang, THEOCHEM 2006, 765, 77–83.
R. Fruttero, B. Ferrarotti, A. Serafino, A. D. Stilo, A. Gosco,
J. Heterocycl. Chem. 1989, 26, 1345–1347.
152.3, 151.5, 144.7, 131.6, 123.6, 111.2, 8.5 ppm. IR: ν = 3267 (vw),
˜
3150 (w), 1626 (s), 1606 (m), 1525 (w), 1469 (m), 1433 (m) 1385
(w), 1301 (s), 1279 (vs), 1257 (vs), 1227 (vs), 1173 (m), 1131 (m),
1080 (m), 1007 (m), 968 (w), 868 (m), 820 (w), 787 (s), 758 (s), 689
(m), 612 (s) cm–1. Raman: ν = 1606, 1522, 1438, 1384, 1304, 1184,
˜
[5]
[6]
[7]
1128, 1084, 1004 cm–1. C7H9N13O4 (339.09): calcd. C 24.78, H 2.67,
N 53.68; found C 24.72, H 2.69, N 53.66. ESD: 500 mJ. Impact
friction: 20 J.
4: 0.30 g of white solid was obtained (yield 88%). 1H NMR
(500 MHz, [D6]DMSO): δ = 9.43 (s, 2 H), 9.26 (s, 1 H), 2.35 (s, 3
H) ppm. 13C NMR (126 MHz, [D6]DMSO): δ = 153.5, 152.5,
143.8, 143.5, 111.2, 8.5 ppm. IR: ν = 3278 (w), 3140 (w), 1624 (m),
˜
1606 (m), 1434 (m), 1333 (m), 1269 (vs), 1233 (s), 1130 (v), 1087
(w), 1025 (m), 954 (m), 864 (m), 821 (s), 759 (m), 734 (m), 670 (m),
624 (s), 610 (s) cm–1. Raman: ν = 1608, 1520, 1490, 1388, 1302,
˜
1234, 1182, 1128, 1082, 1006 cm–1. C7H9N13O4 (339.09): calcd. C
24.78, H 2.67, N 53.68; found C 24.90, H 2.68, N 53.65. ESD:
750 mJ. Impact friction: 32 J.
5: 0.26 g of white solid was obtained (yield 77%) 1H NMR
(500 MHz, [D6]DMSO): δ = 9.25 (s, 1 H), 8.32 (s, 1 H), 8.02 (br, 1
H), 2.35 (s, 3 H) ppm. 13C NMR (126 MHz, [D6]DMSO): δ =
154.1, 152.5, 150.2, 143.6, 138.8, 111.2, 8.5 ppm. IR: ν = 3251 (vw),
˜
3072 (vw), 1682 (s), 1624 (s), 1607 (m), 1520 (m), 1470 (m), 1412
(m), 1303 (m), 1279 (vs), 1237 (s), 1139 (w), 1092 (s), 1049 (m),
1014 (m), 948 (s), 878 (w), 827 (m), 730 (w), 671 (m), 619 (s) cm–1.
[8]
[9]
Raman: ν 1606, 1518, 1490, 1418, 1370, 1336, 1302, 1236, 1184,
˜
1138, 1092, 1046, 1012, 882 cm–1. C7H9N13O4 (339.09): calcd. C
24.78, H 2.67, N 53.68; found C 24.77, H 2.72, N 53.21. ESD:
600 mJ. Impact friction: 24 J.
Supporting Information (see footnote on the first page of this arti-
cle): Structural characterization and overview of selected crystallo-
graphic data of 1, 2, 4, and 5.
[10]
[11]
[12]
[13]
P. N. Gaponik, V. P. Karavai, Chem. Heterocycl. Compd. 1984,
20, 1388–1391.
Acknowledgments
L. X. Liang, K. Wang, C. M. Bian, L. M. Ling, Z. M. Zhou,
Chem. Eur. J. 2013, 19, 14902–14910.
a) M. J. Kamlet, S. J. Jacobs, J. Chem. Phys. 1968, 48, 23–35;
b) M. J. Kamlet, S. J. Jacobs, J. Chem. Phys. 1968, 48, 36–42;
c) V. Thottempudi, F. Forohor, D. A. Parrish, J. M. Shreeve,
Angew. Chem. Int. Ed. 2012, 51, 9881–9885.
This work was supported by the Natural Science Foundation of
Jiangsu Province (grant number BK2011696) and the National
Natural Science Foundation of China (NSFC) (grant number
21376121).
[14]
[15]
a) Y.-H. Joo, H. X. Gao, D. A. Parrish, S. G. Cho, E. M. Goh,
J. M. Shreeve, J. Mater. Chem. 2012, 22, 6123–6130; b) Q. H.
Lin, Y. C. Li, Y. Y. Li, Z. Wang, W. Liu, C. Qi, S. P. Pang, J.
Mater. Chem. 2012, 22, 666–674.
Test methods were performed according to the UN Recommen-
dations on the Transport of Dangerous Goods, Manual of Tests
and Criteria, 4th rev. ed., United Nations Publications, New
York, 2003; 13.4.2 Test 3, (ii) BAM Fallhammer, p. 75–82.
N. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Eur.
J. Inorg. Chem. 2013, 2167–2180.
[1] a) Y. Q. Zhang, D. A. Parrish, J. M. Shreeve, J. Mater. Chem.
2013, 1, 585–593; b) N. Fischer, D. Fischer, T. M. Klapötke,
D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 2012, 22, 20418–
20422; c) G. H. Tao, Y. Guo, D. A. Parrish, J. M. Shreeve, J.
Mater. Chem. 2010, 20, 2999–3005; d) A. A. Dippold, T. M.
Klapötke, J. Am. Chem. Soc. 2013, 135, 9931–9938; e) Y.-H.
Joo, J. M. Shreeve, Angew. Chem. 2010, 122, 7478; Angew.
Chem. Int. Ed. 2010, 49, 7320–7323; f) Y.-H. Joo, J. M. Shreeve,
J. Am. Chem. Soc. 2010, 132, 15081–15090.
[2] a) L. V. Batog, L. S. Konstantinova, O. V. Lebedev, L. I.
Khmel’nitskii, Mendeleev Commun. 1996, 6, 193–195; b) H. F.
Huang, Z. M. Zhou, L. X. Liang, J. H. Song, K. Wang, D.
Cao, W. W. Sun, C. M. Bian, M. Xue, Z. Anorg. Allg. Chem.
2012, 638, 392–400; c) P. W. Leonard, D. E. Chavez, P. F. Pago-
ria, D. L. Parrish, Propellants Explos. Pyrotech. 2011, 36, 233–
239.
[3] a) H. V. Huynh, M. A. Hiskey, D. E. Chavez, D. L. Naud,
R. D. Gilardi, J. Am. Chem. Soc. 2005, 127, 12537–12543; b)
A. Saikia, R. Sivabalan, B. G. Polke, G. M. Gore, A. Singh,
A. S. Rao, A. K. Sikder, J. Hazard. Mater. 2009, 170, 306–313;
c) M. Göbel, T. M. Klapötke, Adv. Funct. Mater. 2009, 19, 347–
365; d) J. Kerth, S. Löbbecke, Propellants Explos. Pyrotech.
2002, 27, 111–118.
[16]
[17]
[18]
R. Mayer, J. Köhler, A. Homburg, in: Explosives, vol. 5, Wiley-
VCH, Weinheim, Germany, 2002.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
Eur. J. Inorg. Chem. 2014, 1231–1238
1237
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim