X. Tan et al. / Inorganic Chemistry Communications 13 (2010) 1061–1063
1063
Appendix A. Supplementary Data
CCDC 772101 contains the supplementary crystallographic data of
1
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.inoche.2010.06.014.
References
[
1] (a) D.M. Kurtz, Chem. Rev. 90 (1990) 585–606;
(
(
b) B.J. Wallar, J.D. Lipscomb, Chem. Rev. 96 (1996) 2625–2658;
c) E.I. Solomon, T.C. Brunold, M.I. Davis, J.N. Kemsley, S.K. Lee, N. Lehnert, F.
Neese, A.J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 100 (2000) 235–350;
d) J. Du Bois, T.J. Mizoguchi, S. Lippard, Coord. Chem. Rev. 200–202 (2000)
(
4
43–485;
M
Fig. 2. Plot of the temperature dependence of the χ for 1.
(
(
e) E.Y. Tshuva, S. Lippard, J. Chem. Rev. 104 (2004) 987–1012;
f) G.J.P. Britovsek, V.C. Gibson, D.F. Wass, Angew. Chem. Int. Ed. 38 (1999)
428–447.
noting that FeIII ions of 1 exhibit thermally induced quartet↔doublet
spin transitions, and these transitions were abrupt.
Assuming isotropic exchange, the experimental magnetic data
was simulated for the dimeric Fe(III) system based on the spin
[
[
2] (a) S.M. Gorun, S.J. Lippard, Inorg. Chem. 30 (1991) 1625–1630;
(b) J. Jullien, G. Juhasz, P. Mialane, E. Dumas, C.R. Mayer, J. Marrot, E. Riviere, E.L.
Bominaar, E. Munck, F. Secheresse, Inorg. Chem. 45 (2006) 6922–6927.
3] L. Merz, W. Haase, J. Chem. Soc. Dalton Trans. (1980) 875–879;
(
c) E. Labisbal, L. Rodriguez, O. Souto, A. Sousa-Pedrares, J. Garcia-Vazquez, J.
Romero, A. Sousa, M. Yanez, F. Orallob, J. Real, Dalton Trans. (2009)
8644–8656.
1 2 1 2
Hamiltonian H=−2JS S with the following equation (S =S =5/2)
[11]:
[
4] L.K. Thompson, S.K. Mandal, S.S. Tandon, J.N. Bridson, M.K. Park, Inorg. Chem. 35
2
2
(1996) 3117–3125.
χM = ð2Nβ g = kTÞ½ð55 + 30 exp ð−10J = kTÞ + 14 expð−18J = kTÞ
[5]
(a) E.Y. Tshuva, M. Versano, I. Goldberg, M. Kol, H. Weitman, Z. Goldschmidt,
Inorg. Chem. Commun. 2 (1999) 371–373;
+
+
+
5 expð−24J = kTÞ + expð−28J = kTÞÞ= ð11 + 9 expð−10J = kTÞ
7 expð−18J = kTÞ + 5 expð−24J = kTÞ + 3 expð−28J = kTÞ
expð−30J = kTÞÞꢀ
(
(
b) L.P. Rothwell, Acc. Chem. Res. 21 (1988) 153–159;
c) S.W. Schweiger, D.L. Tillison, M.G. Thorn, P.E. Fanwick, I.P. Rothwell, J. Chem.
Soc. Dalton Trans. (2001) 2401–2408;
(
(
d) M.J. Caulfield, T. Russo, D.H. Solomon, Aust. J. Chem. 53 (2000) 545–549;
e) B. Castellano, E. Solari, C. Florian, N. Re, A. Chiesi-Villa, C. Rizzoli, Chem. Eur. J.
5
(1999) 722–737;
Very good agreement between the theoretical and experimental
data was obtained by using the following parameters: g=2.0, J=
(f) L. Michalczyk, S. De Gala, J.W. Bruno, Organometallics 20 (2001) 5547–5556;
(
g) K.D. Karlin, R.W. Cruse, Y. Gultneh, J.C. Hayes, J. Zubieta, J. Am. Chem. Soc. 106
1984) 3372–3374;
h) T.N. Sorrell, M.L. Garrity, Inorg. Chem. 30 (1991) 210–215.
(
−
1
−
13.58 cm . In accordance with Gorun and Lippard [2a], the
(
magnitude of anti-ferromagnetic coupling was determined by the
structural parameter P, which represents half of the shortest super-
exchange pathway between two iron atoms. The relation between the
[6] (a) H. Nie, S.M.J. Aubin, M.S. Mashuta, C.-H. Wu, J.F. Richardson, D.N.
Hendrickson, R.M. Buchanan, Inorg. Chem. 34 (1995) 2382–2388;
(
b) S. Uhlenbrock, B. Krebs, Angew. Chem. Int. Ed Engl. 31 (1992) 1647–1648.
7] Synthesis of complex [Fe ] 1: A solution of 2-tert-butyl-4-methylphenol (3.28 g,
0.020 mol), 2-aminoethanol (0.61 g, 0.010 mol), and 37% aqueous formaldehyde
1.80 ml, 0.020 mol) in ethanol (50 ml) was refluxed for 8 h, a yellow powder was
obtained. After adding triethylamine (3.10 g, 0.030 mol), and FeCl ·6H O (2.70 g,
.010 mol) to above yellow mixture, the color of the solution changed from
[
2 2
L
−
1
P parameter and J was given by −J (cm )=Aexp(BP(Å)), where
1
1
(
A=8.763×10 and B=−12.663. Applying the structural parameter
3
2
P of complex 1 to the Gorun–Lippard equation resulted in J=
0
−
1
−
12.9 cm , which agrees with the experimental data.
yellow to deep red. The solution was allowed to evaporate to give red crystals,
which were collected and dried in vacuo (1.26 g, 27%, based on 2-tert-butyl-4-
In summary, the present study shows that the title ligand can build
methylphenol). Calcd for C52
6.97; H, 7.74; N, 3.01.
[8] Crystal data for 1: C56H80Fe N O , M=1020.92, Orthorhombic, P2(1)2(1)2(1),
2 2 6
H72Fe N O : C, 66.89; H, 7.72; N, 3.00; Found: C,
a high spin dinuclear iron(III) complex in which the structure and
properties can be controlled by the design of bridged ligands.
Currently we are exploring this line, as well as the assembly for
other metals.
6
2
2 8
o
a=9.6330(13), b=16.890(2), c=33.104(5) Å, α=90.00, β=90.00, γ=90.00 ,
3
−3
V=5386.1(13) Å , Z=4, Dc=1.259 Mgm , R
9] R.E. Norman, R.C. Holz, S. Menage, L. Que Jr, J.H. Zhang, C.J. O'Connor, Inorg. Chem.
9 (1990) 4629–4631.
[10] (a) R. Werner, S. Ostrovsky, K. Griesar, W. Haase, Inorg. Chim. Acta 326 (2001)
8–88;
1
=0.0657, wR2=0.1390.
[
2
Acknowledgments
7
(
b) A. Horn Jr, I. Vencato, A.J. Bortoluzzi, R. Hörner, R.A. Nome Silva, B. Spoganicz,
V. Drago, H. Terenzi, M.C.B. de Oliveira, R. Werner, W. Haase, A. Neves, Inorg.
Chim. Acta 358 (2005) 339–351;
This work was supported by the Research Foundation for Returned
Chinese Scholars Overseas of the Chinese Education Ministry (No.
B7050170), the National Science Foundation of China (No. 20971045),
and the Student Research Program (SRP) of South China University of
Technology.
(c) S.M. Gorun, S.J. Lippard, Inorg. Chem. 30 (1991) 1625–1630.
[
11] J.T. Wrobleski, David B. Brown, Inorg. Chem. 17 (1978) 2959–2961.