P. Jin et al. / Journal of Molecular Structure 992 (2011) 19–26
25
O(6), H(4), H(7) and H(8) atoms in TS6 are corresponding to O(9),
O(1), O(2), H(11), H(8) and H(10) atoms in 0B (Fig. 6), respectively.
above, we think the peroxo ring active structure should be more
reasonable. Furthermore, we will provide the further conclusion
after we carefully research the complete mechanism of the green
oxidation of cyclohexene to adipic acid in future.
3.3.2.2. The self-cycle mechanism of hydroperoxo active structure with
oxalic acid ligand (1B). The self-cycle mechanism of hydroperoxo
active structure with oxalic acid ligand (1B) is given in Fig. 8, which
also has two stages as follows:
Acknowledgments
First, the dissociative H(8) atom which is derived from ligand is
in the vicinity of anionic groups, when the system is heated, the
H(8) atom will be close to 1A (Scheme 2) to form bond
(H(8)AO(9)) in intermediate M12. Then the H(8) atom attacks
the O(2) atom in M12 to generate 1B via transition state TS7. The
energy barrier of this process is only 9.61 kcal/mol (M12 ? TS7,
Fig. 7). Moreover, the distances of O(2)AW(3), H(8)AO(9),
W(3)AO(9) and O(2)AH(8) change from 1.940 Å, 0.971 Å, 2.605 Å
and 2.919 Å in M12 to 2.074 Å, 1.251Å, 2.373 Å and 1.201 Å in
TS6, respectively, while the distance of W(3)AO(9) is 2.199 Å in
1B. In this process, two bond (O(2)AW(3), H(8)AO(9)) break so
as to generate new bond (O(2)AH(8)). Then, the formed 1B will
participate in the catalytic reaction.
Second, the energy barrier of traversing the four-membered
ring (W(3)AO(6)AH(7)AO(1)) transition state TS8 is only
13.10 kcal/mol (M14 ? TS8, Fig. 7), which is 5.09 kcal/mol lower
than that without oxalic acid ligand. The distances of the
W(3)AO(6), O(1)AH(7), O(1)AW(3) and O(6)AH(7) are 3.910 Å,
1.830 Å, 1.964 Å and 0.981 Å in M14 and these distances change
from 2.210 Å, 1.285 Å, 2.164 Å and 1.152 Å in TS8 to 2.025 Å,
0.9810 Å, 2.506 Å and 1.864 Å in M15, respectively. Noteworthy,
O(6), O(5) and H(4) atoms in M15 are corresponding to O(1),
O(2) and H(8) atoms in 1B (Fig. 8), respectively.
Compared the highest energy barrier of cycle process of 0B
(18.20 kcal/mol (M11 ? TS6) in Fig. 7) with that of 1B
(13.10 kcal/mol (M14 ? TS8) in Fig. 7), the energy barrier of cycle
process with oxalic acid ligand is 5.10 kcal/mol lower than that
without oxalic acid ligand, which also indicates that the self-cycle
process of hydroperoxo active structure with oxalic acid ligand is
more energy favorable. However, the reaction trend should be
from right to left in the cycle process of 1B (Fig. 7), which indicate
that the self-cycle process of 1B could not proceed. Thus, the
hydroperoxo active structures may be unreasonable in theory.
We gratefully acknowledge the financial support from the inno-
vation fund for Elitists of Henan province, China (Grants No.
0221001200).
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
[1] S.E. Jacobson, D.A. Muccigrosso, F. Mares, J. Org. Chem. 44 (1979) 921–924.
[2] S. Sakaguchi, S. Watase, Y. Katayama, Y. Sakata, Y. Nishiyama, Y. Ishii, J. Org.
Chem. 59 (1994) 5681–5686.
[3] S. Sakaguchi, Y. Yamamoto, T. Sugimoto, H. Yamamoto, Y. Ishii, J. Org. Chem. 64
(1999) 5954–5957.
[4] H. Yamamoto, M. Tsuda, S. Sakaguchi, Y. Ishii, J. Org. Chem. 62 (1997) 7174–
7177.
[5] W.S. Zhu, H.M. Li, X.Y. He, H.M. Shu, Y.S. Yan, J. Chem. Res. 12 (2006) 774–775.
[6] W.P. Griffith, B.C. Parkin, A.J.P. White, D.J. Williams, J. Chem. Soc., Dalton Trans.
(1995) 3131–3138.
[7] X.Y. Shi, J.F. Wei, J. Mol. Catal. A: Chem. 229 (2005) 13–17.
[8] K. Kamata, S. Kuzuya, K. Uehara, S. Yamaguchi, N. Mizuno, Inorg. Chem. 46
(2007) 3768–3774.
[9] K. Kamata, T. Hirano, N. Mizuno, Chem. Commun. (2009) 3958–3960.
[10] K. Kamata, T. Hirano, S. Kuzuya, N. Mizuno, J. Am. Chem. Soc. 131 (2009) 6997–
7004.
[11] K. Kamata, R. Ishimoto, T. Hirano, S. Kuzuya, K. Uehara, N. Mizuno, Inorg.
Chem. 49 (2010) 2471–2478.
[12] V. Nardello, J.M. Aubry, D.E. De Vos, R. Neumann, W. Adam, R. Zhang, J.E. ten
Elshof, P.T. Witte, P.L. Alsters, J. Mol. Catal. A: Chem. 251 (2006) 185–193.
[13] J. Hofmann, U. Freier, M. Wecks, A. Demund, Top. Catal. 33 (2005) 243–247.
[14] G. Grigoropoulou, J.H. Clark, J.A. Elings, Green Chem. 5 (2003) 1–7.
[15] A. Castellan, J.C.J. Bart, S. Cavallaro, Catal. Today 9 (1991) 237–254.
[16] M.H. Thiemens, W.C. Trogler, Science 251 (1991) 932–934.
[17] R. Noyori, M. Aoki, K. Sato, Chem. Commun. (2003) 1977–1986.
[18] M. Dugal, G. Sankar, R. Raja, J.M. Thomas, Angew. Chem. Int. Ed. 39 (2000)
2310–2313.
[19] R. Raja, G. Sankar, J.M. Thomas, Angew. Chem. Int. Ed. 39 (2000) 2313–2316.
[20] A. Chavan, D. Srinivas, P. Ratnasamy, J. Catal. 212 (2002) 39–45.
[21] G.P. Scindler, P. Bartl, W.F. Hoelderich, Appl. Catal. A: Gen. 166 (1998) 267–
279.
4. Conclusion
[22] R. Raja, S.O. Lee, M.S. Sanchez, G. Sankar, K.D.M. Harris, B.F.G. Johnson, J.M.
Thomas, Top. Catal. 20 (2002) 85–88.
[23] R. Raja, J.M. Thomas, M.C. Xu, K.D.M. Harris, H.M. Greenhill, K. Quill, Chem.
Commun. (2006) 448–450.
[24] G. Lapisardi, F. Chiker, F. Launay, J.P. Nogier, J.L. Bonardet, Catal. Commun.
(2004) 277–281.
[25] K. Sato, M. Aoki, R.A. Noyori, Science 281 (1998) 1646–1647.
[26] T. Oguchi, T. Ura, Y. Ishii, M. Ogawa, Chem. Lett. 18 (1989) 857–860.
[27] Y. Ishii, K. Yamawaki, T. Ura, H. Yamada, T. Yoshida, M. Ogawa, J. Org. Chem. 53
(1988) 3587–3593.
[28] C. Venturello, E. Alneri, M. Ricci, J. Org. Chem. 48 (1983) 3831–3833.
[29] C. Venturello, M. Ricci, Eur. Pat. Appl. EP 122804 (1984).
[30] H. Jiang, H. Gong, Z. Yang, X.T. Zhang, Z.L. Sun, React. Kinet. Catal. Lett. 75
(2002) 315–321.
[31] Y. Usui, K. Sato, Green Chem. 5 (2003) 373–375.
[32] W.S. Zhu, H.M. Li, X.Y. He, Q. Zhang, H.M. Shu, Y.S. Yan, Catal. Commun. 9
(2008) 551–555.
[33] P.U. Maheswari, X.H. Tang, R. Hageb, P. Gameza, J. Reedijk, J. Mol. Catal. A:
Chem. 258 (2006) 295–301.
[34] Y.Q. Deng, Z.F. Ma, K. Wang, J. Chen, Green Chem. 1 (1999) 275–276.
[35] C. Di Valentin, P. Gisdakis, I.V. Yudanov, N. Rösch, J. Org. Chem. 65 (2000)
2996–3004.
In this paper, the exploring of catalysis of tungsten peroxo com-
plexes for the green oxidation of cyclohexene to adipic acid in the
absence of organic solvent and phase-transfer catalyst has been
done in experiment, which indicates that the catalytic systems
have very excellent activities. Based on the experimental results,
the two possible types of active structures of tungsten peroxo com-
plexes have been studied using the DFT/B3LYP method in theory,
which include peroxo ring and hydroperoxo active structures. To
interpret the activities and stabilities of these peroxo complexes
in detail, the self-cycle mechanisms of two active structures have
been investigated in this work. For both the active structures,
self-cycle processes of active structures with oxalic acid ligand
are more energy favorable than those without oxalic acid ligand,
which demonstrates that the oxalic acid ligand plays a very signif-
icant role in promoting the catalytic reaction. As can be seen from
the profiles of both the self-cycle processes (Figs. 4 and 7),
although all the energy barriers in the profiles are not high at the
experimental temperature and the B3LYP/6-31G(d, p) level, the en-
ergy of product is so higher than that of reactant in self-cycle pro-
cess of 1B that the reaction should be impossible to occur.
Moreover, only the crystal data of peroxo ring structure with oxalic
acid ligand could be found in the Refs. [43,45]. As concerned as
[36] A.I. Francisco, M.D. Vargas, J.W. de, M. Carneiro, M. Lanznaster, J.C. Torres, C.A.
Camara, A.C. Pinto, J. Mol. Struct. 891 (2008) 228–232.
ˇ
´
ˇ
´
[37] Z. Dzolic, M. Cetina, D. Kovacek, A. Hergold-Brundic, D. Mrvoš-Sermek, A. Nagl,
N. Slade, K. Pavelic´, J. Balzarini, E.D. Clercq, O. Zerbe, G. Folkers, L. Scapozza, M.
Mintas, J. Mol. Struct. 655 (2003) 229–241.
[38] (a) D.H. Wei, M.S. Tang, J. Zhao, L. Sun, W.J. Zhang, C.F. Zhao, S.R. Zhang, H.M.
Wang, Tetrahedron: Asymmetry 20 (2009) 1020–1026;
(b) D.H. Wei, M.S. Tang, J. Phys. Chem. A 113 (2009) 11035–11041;