10.1002/anie.202015887
Angewandte Chemie International Edition
RESEARCH ARTICLE
[23] P. Zambelli, L. Tamborini, S. Cazzamalli, A. Pinto, S. Arioli, S. Balzaretti,
F. J. Plou, L. Fernandez-Arrojo, F. Molinari, P. Conti, D. Romano, Food
Chem. 2016, 190, 607-613.
biotransformations have been shown to be very sensitive to mass
transfer and stirring rate in the batch mode, which makes scale-
up challenging. A further advantage of flow processes is that
shear forces can be minimized, which is beneficial for enabling a
high biocatalyst stability. Moreover, constant product quality from
batch to batch can also not be necessarily ensured due to the
sensitivity of the system in contrast to a segmented flow system.
We believe that this whole-cell flow process technology has a
broad reaction scope and can be applied to numerous biocatalytic
systems, thus contributing to a further increase of the number of
whole-cell catalytic applications in organic synthesis.
[24] D. Valikhani, P. L. Srivastava, R. K. Allemann, T. Wirth, ChemCatChem
2020, 12, 2194-2197.
[25] B. Halan, R. Karande, K. Buehler, A. Schmid, J. Flow Chem. 2016, 6, 39-
42.
[26] R. Gross, K. Buehler, A. Schmid, Biotechnol. Bioeng. 2013, 110, 424-
436.
[27] N. Miložič, G. Stojkovič, A. Vogel, D. Bouwes, P. Žnidaršič-Plazl, N.
Biotechnol. 2018, 47, 18-24.
[28] N. Adebar, H. Gröger, Eur. J. Org. Chem. 2020, 6062-6067.
[29] R. Karande, A. Schmid, K. Buehler, Langmuir 2010, 26, 9152-9159.
[30] R. Karande, A. Schmid, K. Buehler, Adv. Synth. Catal. 2011, 353, 2511-
2521.
Acknowledgements
[31] R. Karande, A. Schmid, K. Buehler, Org. Process Res. Dev. 2016, 20,
361-370.
[32] F. Huynh, M. Tailby, A. Finniear, K. Stephens, R. K. Allemann, T. Wirth,
Angew. Chem. 2020, 132, 16632-16637; Angew. Chem. Int. Ed. 2020,
59, 16490-16495.
The authors gratefully acknowledge generous support from the
European Union (EU) within the EU-Research Project ONE-
FLOW (“Catalyst Cascade Reactions in ‘One-Flow’ within a
Compartmentalized, Green-Solvent ‘Digital Synthesis Machinery’
– End-to-End Green Process Design for Pharmaceuticals”), Work
programme: EU proposal 737266. Furthermore, we thank Manuel
Warkentin for technical assistance and Ms. Georgina Willms from
the Ellipsis English Writing Support Centre at Bielefeld University
for editorial support.
[33] N. Laurain, S. Zard, PCT Patent Applic. WO 01/02320 A1, 2001.
[34] K. Abe, T. Hattori, Y. Matsumori, US Patent US 9742033 B2, 2017.
[35] J. Smets, H. R. G. Denuette, A. Pintens, K. Van Aken, F. A. C. Vrielynck,
US Patent US 8609603 B2, 2013.
[36] K. Floková, K. Feussner, C. Herrfurth, O. Miersch, V. Mik, D. Tarkowská,
M. Strnad, I. Feussner, C. Wasternack, O. Novák, Phytochemistry 2016,
122, 230-237.
[37] N. Zumbrägel, D. Wetzl, H. Iding, H. Gröger, Heterocycles 2017, 95,
1261-1271.
Keywords: Biocatalysis • biphasic reaction • flow chemistry •
segmented flow processes • whole-cell catalysis
[38] T. Betke, P. Rommelmann, K. Oike, Y. Asano, H. Gröger, Angew. Chem.
2017, 129, 12533-12538; Angew. Chem. Int. Ed. 2017, 56, 12361-12366.
[39] P. Rommelmann, T. Betke, H. Gröger, Org. Process Res. Dev. 2017, 21,
1521-1527.
[1]
[2]
K. Drauz, H. Gröger, O. May, Enzyme Catalysis in Organic Synthesis,
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012.
U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C.
Moore, K. Robins, Nature 2012, 485, 185-194.
[40] C. Plass, A. Hinzmann, M. Terhorst, W. Brauer, K. Oike, H. Yavuzer, Y.
Asano, A. J. Vorholt, T. Betke, H. Gröger, ACS Catal. 2019, 9, 5198-
5203.
[41] A. Hinzmann, S. Glinski, M. Worm, H. Gröger, J. Org. Chem. 2019, 84,
4867-4872.
[3]
[4]
[5]
P. Domínguez de María, F. Hollmann, Front. Microbiol. 2015, 6, 1257.
A. M. Klibanov, Nature 2001, 409, 241-246.
[42] Y. Kato, K. Nakamura, H. Sakiyama, S. G. Mayhew, Y. Asano,
Biochemistry 2000, 39, 800-809.
S. L. Lee, T. F. O’Connor, X. Yang, C. N. Cruz, S. Chatterjee, R. D.
Madurawe, C. M. V. Moore, L. X. Yu, J. Woodcock, J. Pharm. Innov.
2015, 10, 191-199.
[43] D. Maynard, H. Gröger, T. Dierks, K. J. Dietz, J. Exp. Bot. 2018, 69, 5341-
5354.
[6]
[7]
M. Baumann, I. R. Baxendale, Beilstein J. Org. Chem. 2015, 11, 1194-
1219.
[44] P. Zerbe, E. W. Weiler, F. Schaller, Phytochemistry 2007, 68, 229-236.
[45] J. Löwe, K.-J. Dietz, H. Gröger, Adv. Science 2020, 7, 1902973.
B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. 2015, 127, 6788-
6832; Angew. Chem. Int. Ed. 2015, 54, 6688-6728.
R. Porta, M. Benaglia, A. Puglisi, Org. Process Res. Dev. 2016, 20, 2-25.
T. Wirth, Microreactors in Organic Chemistry and Catalysis, Wiley-VCH,
2013.
[8]
[9]
[10] M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton, C. Battilocchio, S. V.
Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45, 4892-4928.
[11] L. Hajba, A. Guttman, J. Flow Chem. 2016, 6, 8-12.
[12] E. Laurenti, A. dos Santos Vianna Jr., Biocatalysis 2016, 1, 148-165.
[13] J. Döbber, M. Pohl, S. V. Ley, B. Musio, React. Chem. Eng. 2018, 3, 8-
12.
[14] I. Denčić, S. De Vaan, T. Noël, J. Meuldijk, M. De Croon, V. Hessel, Ind.
Eng. Chem. Res. 2013, 52, 10951-10960.
[15] A. S. de Miranda, M. V. de M. Silva, F. C. Dias, S. P. de Souza, R. A. C.
Leão, R. O. M. A. de Souza, React. Chem. Eng. 2017, 2, 375-381.
[16] X. Tang, R. K. Allemann, T. Wirth, Eur. J. Org. Chem. 2017, 414-418.
[17] A. Brahma, B. Musio, U. Ismayilova, N. Nikbin, S. B. Kamptmann, P.
Siegert, G. E. Jeromin, S. V. Ley, M. Pohl, Synlett 2016, 27, 262-266.
[18] P. De Santis, L.-E. Meyer, S. Kara, React. Chem. Eng. 2020, published
as Advanced Article; DOI 10.1039/d0re00335b.
[19] A. Pinto, M. L. Contente, L. Tamborini, Curr. Opin. Green Sustain. Chem.
2020, 25, 100343.
[20] L. H. Andrade, W. Kroutil, T. F. Jamison, Org. Lett. 2014, 16, 6092-6095.
[21] G. Stojkovič, P. Žnidaršič-Plazl, Process Biochem. 2012, 47, 1102-1107.
[22] M. Polakovič, J. Švitel, M. Bučko, J. Filip, V. Neděla, M. B. Ansorge-
Schumacher, P. Gemeiner, Biotechnol. Lett. 2017, 39, 667-683.
6
This article is protected by copyright. All rights reserved.