586
MELLER AND MOORTGAT
3. P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau,
G. D. Hayman, M. E. Jenkin, G. K. Moortgat, and F.
Zabel, Atmos. Environ., A 26, 1805 (1992).
4. J. Chen, T. Zhu, and H. Niki, J. Phys. Chem., 96, 6115
(1992).
5. T. J. Bevilacqua, D. R. Hanson, and C. J. Howard, J.
Phys. Chem., 97, 3750 (1993).
6. J. Sehested and O. J. Nielsen, Chem. Phys. Lett., 206,
369 (1993).
7. A. A. Turnipseed, S. B. Barone, and A. R. Ravi-
shankara, J. Phys. Chem., 98, 4594 (1994).
8. N. R. Jensen, D. R. Hanson, and C. J. Howard, J. Phys.
Chem., 98, 8574 (1994).
9. J. Chen, V. Young, T. Zhu, and H. Niki, J. Phys. Chem.,
97, 11696 (1993).
10. O. J. Nielsen and J. Sehested, Chem. Phys. Lett., 213,
433 (1993).
11. T. J. Wallington, M. D. Hurley, and W. F. Schneider,
Chem. Phys. Lett., 213, 442 (1993).
acts with CO with a chain length of 3–9 under the
experimental conditions, the expected contribution of
reaction (18) to the total loss of CO will be less than
1%. Even if reaction (4b) would take place, it would
have only a very little effect on the rate constant k3a .
In three earlier studies rate constants for the reac-
tion CF3O ϩ CO have been determined. Saathoff and
Zellner [24] reported a rate constant of k3 ϭ 4.4 ϫ
10Ϫ14 cm3 moleculeϪ1 sϪ1 at 298 K in 50 torr He. In
the more recent studies by Turnipseed et al. [23] and
by Wallington and Ball [25] a pressure dependence of
reaction (3) was observed. High pressure rate con-
stants have been reported for k3,ϱ ϭ (6.8 Ϯ 1.2) ϫ
10Ϫ14 cm3 moleculeϪ1 sϪ1 and k3(760 torr) ϭ
(7.2 Ϯ 0.7) ϫ 10Ϫ14 cm3 moleculeϪ1 sϪ1, respec-
tively. The value obtained in this work k3a ϭ
(5.0 Ϯ 0.9) ϫ 10Ϫ14 cm3 moleculeϪ1 sϪ1 is somehow
lower than the reported high pressure rate constants.
This lower rate constant might be caused by an over-
estimation of the CF3O concentration due to its indi-
rect determination in this study as stated earlier in
this article.
12. M. M. Maricq and J. J. Szente, Chem. Phys. Lett., 213,
449 (1993).
13. C. Fockenberg, H. Saathoff, and R. Zellner, Chem.
Phys. Lett., 218, 21 (1994).
14. R. Meller and G. K. Moortgat, J. Photochem. Photo-
biol. A: Chem., 86, 15 (1995).
No pressure dependent studies were performed in
this study, but Turnipseed et al. [23] found that the
high pressure limit for this reaction is reached at
about 300 torr. Therefore, the rate constant obtained
here at 760 torr can be used for calculations in the
troposphere. It has been state elsewhere [10] that re-
action with CH4 represents the dominant sink for
CF3O radicals in the troposphere, leading to an aver-
age lifetime for CF3O of 1–2 s. In addition, reaction
of CF3O with H2O might need to be considered, but
only upper limits for the reaction of CF3O with H2O
are reported [22,23]. Choosing an average value for
the CO concentration of about 100 ppb in the tropos-
phere and using the k3a determined in this work, it can
be calculated that the lifetime of CF3O towards the
reaction with CO is about 8 s, and that therefore only
a minor fraction of the CF3O radicals will react with
CO. It must be also considered that CF3O radicals are
reformed in the follow-up reactions (no net loss), so
that it can be concluded that CO is not an important
sink for CF3O.
15. T. J. Wallington and J. C. Ball, Chem. Phys. Lett., 234,
187 (1995).
16. J. Chen, T. Zhu, H. Niki, and G. J. Mains, Geophys.
Res. Lett., 19, 2215 (1992).
17. S. B. Barone, A. A. Turnipseed, and A. R. Ravi-
shankara, J. Phys. Chem., 98, 4602 (1994).
18. J. Chen, T. Zhu, V. Young, and H. Niki, J. Phys. Chem.,
97, 7174 (1993).
19. H. Saathoff and R. Zellner, Chem. Phys. Lett., 206, 349
(1993).
20. C. Kelly, J. Treacy, and H. W. Sidebottom, Chem. Phys.
Lett., 207, 498 (1993).
21. C. Kelly, H. W. Sidebottom, J. Treacy, and O. J.
Nielsen, Chem. Phys. Lett., 218, 29 (1994).
22. T. J. Wallington, M. D. Hurley, W. F. Schneider, J. Se-
hested, and O. J. Nielsen, J. Phys. Chem., 97, 7606
(1993).
23. A. A. Turnipseed, S. B. Barone, N. R. Jensen, D. R.
Hanson, C. J. Howard, and A. R. Ravishankara, J.
Phys. Chem., 99, 6000 (1995).
24. H. Saathoff and R. Zellner, presented at the 12th Inter-
national Symposium on Gas Kinetics, July 1992, Uni-
versity of Reading.
25. T. J. Wallington and J. C. Ball, J. Phys. Chem., 99,
3201 (1995).
BIBLIOGRAPHY
26. W. H. Raber and G. K. Moortgat, in Progress and
Problems in Atmospheric Chemistry, World Scientific
Publ. Co, Singapore, J. Barker, Ed., 1996, pp. 318–373.
27. P. J. Aymonino, J. Photochem. Photobiol. 7, 761
(1968).
28. E. L. Varetti and P. J. Aymonino, An. As. Quim. Arg.,
55, 153 (1967).
29. O. J. Nielsen, T. Ellermann, J. Sehested, E. Bart-
1. World Meteorological Organization, Global Ozone Re-
search and Monitoring Project-Report No. 20 Scientific
Assessment of Stratospheric Ozone, 1989, Vol. 2, Ap-
pendix: AFEAS report, 1989.
2. F. Caralp, R. Lesclaux, and A. M. Dognon, Chem.
Phys. Lett., 129, 433 (1986).