Full Paper
also the contributions from the solvent and water vapor (an average
value of 1.5 mL gas), which were measured in an experiment with-
out the catalyst. At room temperature, Vm,20 °C = 24 L mol (see the
S. C. E. Tsang, Angew. Chem. Int. Ed. 2012, 51, 11275–11278; Angew.
Chem. 2012, 124, 11437; e) Q.-Y. Bi, X.-L. Du, Y.-M. Liu, Y. Cao, H.-Y. He, K.-
N. Fan, J. Am. Chem. Soc. 2012, 134, 8926–8933; f) Z.-L. Wang, J.-M. Yan,
Y. Ping, H.-L. Wang, W.-T. Zheng, Q. Jiang, Angew. Chem. Int. Ed. 2013, 52,
–
1
Supporting Information).
4
406–4409; Angew. Chem. 2013, 125, 4502; g) S. Zhang, O. Metin, D. Su,
TON = [Vtotal/(2 × Vm,20 °C)]/ncat (1)
S. Sun, Angew. Chem. Int. Ed. 2013, 52, 3681–3684; Angew. Chem. 2013,
1
2
25, 3769; h) M. Yadav, T. Akita, N. Tsumori, Q. Xu, J. Mater. Chem. 2012,
2, 12582–12586; i) Q.-L. Zhu, N. Tsumoriab, Q. Xu, Chem. Sci. 2014, 5,
where n denotes number of mol, and ncat = 2 ndimer
.
–
1
195–199; j) C. Feng, Y. Hao, L. Zhang, N. Shang, S. Gao, Z. Wang, C. Wang,
RSC Adv. 2015, 5, 39878–39883; k) Y.-L. Qin, Y.-C. Liu, F. Liang, L.-M. Wang,
ChemSusChem 2015, 8, 260–263; l) K. Koh, J.-E. Seo, J. H. Lee, A. Goswami,
C. W. Yoon, T. Asefa, J. Mater. Chem. A 2014, 2, 20444–20449.
4] For selected examples of homogeneous FA dehydrogenation, see: a) C.
Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966–
The calculation of TOF is time-related (h ) and based on the TON
value. For example: using 0.8 μmol of [RhCp*Cl ] and 320 μmol of
2
2
KI in 1.5 mL of FT (2.25:1) solution, 42 mL of gas was released at
0 °C in 2 min, thus:
6
[
–
1
TOF = [42/(2 × 24) × 1000]/(1.6) × 30 = 16406 h .
3
968; Angew. Chem. 2008, 120, 4030; b) B. Loges, A. Boddien, H. Junge,
NMR Spectroscopic Study of FA Dehydrogenation: At room tem-
M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3962–3965; Angew. Chem. 2008,
120, 4026; c) A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann,
R. Jackstell, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6411–
6414; Angew. Chem. 2011, 123, 6535; d) M. Czaun, A. Goeppert, J. Ko-
thandaraman, R. B. May, R. Haiges, G. K. S. Prakash, G. A. Olah, ACS Catal.
perature, FA dehydrogenation catalyzed by [RhCp*Cl ] with or
2
2
–
1
without I was tracked up to 72 h by H NMR spectroscopy (Fig-
ure S8). For reaction without KI, [RhCp*Cl2]2 (5.0 μmol) was dis-
solved in CDCl (1.0 mL) first. Then, FT azeotrope (0.1 mL) was intro-
3
2014, 4, 311–320; e) G. A. Filonenko, R. V. Putten, E. N. Schulpen, M. E. J.
duced, and gas bubbles were observed upon shaking immediately.
The NMR tube was sealed and inserted into the spectrometer im-
Hensen, E. A. Pidko, ChemCatChem 2014, 6, 1526–1530; f) R. Tanaka, M.
Yamashita, L. W. Chung, K. Morokuma, K. Nozaki, Organometallics 2011,
1
mediately to obtain the first H NMR spectrum. The NMR spectra at
3
0, 6742–6750; g) Y. Manaka, W. H. Wang, Y. Suna, H. Kambayashi, J. T.
other times (from 5 min to 72 h) were collected subsequently. For
reaction with KI, [RhCp*Cl2]2 (5.0 μmol) and KI (250 μmol) were
mixed in CDCl3 (1.0 mL) first. When FT azeotrope (0.1 mL) was
added, gas bubbles were observed upon shaking immediately. The
same procedure as that described above was followed.
Muckerman, E. Fujita, Y. Himeda, Catal. Sci. Technol. 2014, 4, 34–37; h) S.
Fukuzumi, T. Kobayashi, T. Suenobu, J. Am. Chem. Soc. 2010, 132, 1496–
1497; i) Z. Wang, S.-M. Lu, J. Li, J. Wang, C. Li, Chem. Eur. J. 2015, 21,
12592; j) J. F. Hull, Y. Himeda, W. H. Wang, B. Hashiguchi, R. Periana, D. J.
Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 2012, 4, 383–388; k) J. H.
Barnard, C. Wang, N. G. Berry, J. Xiao, Chem. Sci. 2013, 4, 1234–1244; l)
A. Boddien, B. Loges, F. Gärtner, C. Torborg, K. Fumino, H. Junge, R. Lud-
wig, M. Beller, J. Am. Chem. Soc. 2010, 132, 8924–8934; m) A. Boddien,
D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy,
R. Ludwig, M. Beller, Science 2011, 333, 1733–1736; n) T. Zell, B. Butschke,
Y. Ben-David, D. Milstein, Chem. Eur. J. 2013, 19, 8068–8072; o) E. A.
Bielinski, P. O. Lagaditis, Y. Zhang, B. Q. Mercado, C. Wurtele, W. H. Bern-
skoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136, 10234–
10237; p) F. Bertini, I. Mellone, A. Ienco, M. Peruzzini, L. Gonsalvi, ACS
Catal. 2015, 5, 1254–1265; q) T. W. Myers, L. A. Berben, Chem. Sci. 2014,
Recording Mass Spectra for FA Dehydrogenation: The catalyst
(
[RhCp*Cl2] or [RhCp*Cl2]2 + KI) was dissolved in methanol first.
2
Then, the FT azeotrope was injected into the vial. After shaking the
vial, the MS analysis was performed. All of the spectra were re-
corded within 5 min after addition of the FT azeotrope (Figure S9).
Acknowledgments
We thank the Dalian Institute of Chemical Physics (DICP) – Uni-
versity of Liverpool – British Petroleum (BP) joint PhD program
for a studentship and British Petroleum (BP) for financial sup-
port (Z. W.).
5
, 2771–2777; r) S. Enthaler, A. Brück, A. Kammer, H. Junge, E. Irran, S.
Gülak, ChemCatChem 2015, 7, 65–69; s) S. Oldenhof, B. de Bruin, M. Lutz,
M. A. Siegler, F. W. Patureau, J. I. van der Vlugt, J. N. H. Reek, Chem. Eur.
J. 2013, 19, 11507.
5] a) K. Fagnou, M. Lautens, Angew. Chem. Int. Ed. 2002, 41, 26–47; Angew.
Chem. 2002, 114, 26; b) P. M. Maitlis, A. Haynes, B. R. James, M. Catellani,
G. P. Chiusoli, Dalton Trans. 2004, 21, 3409–3419.
[
[
Keywords: Dehydrogenation · Rhodium · Homogeneous
catalysis · Formic acid · Halides
6] a) J. Wu, C. Wang, W. Tang, A. Pettman, J. Xiao, Chem. Eur. J. 2012, 18,
9
525–9529; b) J. Wu, W. Tang, A. Pettman, J. Xiao, Adv. Synth. Catal. 2013,
3
55, 35–40; c) Y. Wei, J. Wu, D. Xue, C. Wang, Z. Liu, Z. Zhang, G. Chen,
J. Xiao, Synlett 2014, 25, 1295–1298; d) H. Junge, A. Boddien, F. Capitta,
B. Loges, J. R. Noyes, S. Gladiali, M. Beller, Tetrahedron Lett. 2009, 50,
[
1] For reviews, see: a) P. Makowski, A. Thomas, P. Kuhn, F. Goettmann, Energy
Environ. Sci. 2009, 2, 480–490; b) H. L. Jiang, S. K. Singh, J. M. Yan, X. B.
Zhang, Q. Xu, ChemSusChem 2010, 3, 541–549; c) A. F. Dalebrook, W.
Gan, M. Grasemann, S. Moret, G. Laurenczy, Chem. Commun. 2013, 49,
1
603.
7] The catalytic activity here is slightly lower compared with that in Fig-
ure 1. A different bottle of [RhCp*Cl was used.
8] C. Fischer, C. Kohrt, H.-J. Drexler, W. Baumann, D. Heller, Dalton Trans.
011, 40, 4162–4166.
[
[
[
2 2
]
8735–8751; d) M. Yadav, Q. Xu, Energy Environ. Sci. 2012, 5, 9698–9725;
e) Q.-L. Zhu, Q. Xu, Energy Environ. Sci. 2015, 8, 478–512; f) F. Joo, Chem-
SusChem 2008, 1, 805–808.
2] For reviews, see: a) T. C. Johnson, D. J. Morris, M. Wills, Chem. Soc. Rev.
2
9] a) A. J. Blacker, S. B. Duckett, J. Grace, R. N. Perutz, A. C. Whitwood,
[
Organometallics 2009, 28, 1435–1446; b) species d is one of the most
2
2
010, 39, 81–88; b) M. Grasemann, G. Laurenczy, Energy Environ. Sci.
012, 5, 8171–8181; c) E. Fujita, J. T. Muckerman, Y. Himeda, Biochim.
+
possible configurations for [Rh
porting Information.
2
Cp*
2
Cl(H)(OCHO)] ; please see the Sup-
Biophys. Acta 2013, 1827, 1031–1038; d) S. Enthaler, J. von Langermann,
T. Schmidt, Energy Environ. Sci. 2010, 3, 1207–1217; e) S. Enthaler, Chem-
SusChem 2008, 1, 801–804; f) M. Czaun, A. Goeppert, R. May, R. Haiges,
G. K. Prakash, G. A. Olah, ChemSusChem 2011, 4, 1241–1248; g) B. Loges,
A. Boddien, F. Gärtner, H. Junge, M. Beller, Top. Catal. 2010, 53, 902–914.
3] For selected examples of heterogeneous FA dehydrogenation, see: a) Y.
Huang, X. Zhou, M. Yin, C. Liu, W. Xing, Chem. Mater. 2010, 22, 5122–
[
[
[
10] Species
Rh Cp*
11] Species E is one of the most possible configurations for [Rh Cp* HI ] ;
D is one of the most possible configurations based on
+
[
2
2
IH(OCHO)] ; please see the Supporting Information.
+
2
2
2
please see the Supporting Information.
12] Species C is one of the most possible speculated configurations, but
[
without direct support from experimental data.
5
2
128; b) X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, J. Am. Chem. Soc.
011, 133, 11822–11825; c) K. Tedsree, T. Li, S. Jones, C. W. A. Chan,
[13] Those unknown multinuclear species could be the reservoir of the react-
ive species.
K. M. K. Yu, P. A. Bagot, E. A. Marquis, G. D. Smith, S. C. E. Tsang, Nat.
Nanotechnol. 2011, 6, 302–307; d) S. Jones, J. Qu, K. Tedsree, X. Q. Gong,
[14] The possibility that the protonation step could be the RDS cannot be
ruled out, however, as the equilibrium between the monomer and dimer
Eur. J. Inorg. Chem. 2016, 490–496
www.eurjic.org
495
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim