Tao et al.
Synthesis, Characterization and Application of N-Ti/13X/MCM-41 Mesoporous Molecular Sieves
exceeds the number of hydroxyl free radicals, and degra-
dation efficiency was decreased.
References and Notes
1. N. Andre and Y. L. Zhao, Acc. Chem. Res. 46, 46 (2013).
2. J. S. Beck, J. C. Vartulli, W. J. Roth, M. E. Leonowicz, C. T. Kresge,
K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B.
McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc.
114, 10834 (1992).
The correlation coefficients, R2, and the first-order rate
parameters are shown in Table II. When the initial concen-
tration of DBP increased from 5 to 25 mg L−1, the exper-
imental equilibrium adsorption capacity increased from
32.31 to 95.33 mg g−1 with N-Ti/13X/MCM-41, indicating
that the DBP removal is dependent on initial concentration.
Also, the calculated qe values agree well with the exper-
imental data. The data shows good compliance with the
pseudo first order equation and the regression coefficients
for the linear plots were higher than 0.9616. This result
confirms that physic-sorption might be the controlling
mechanism for adsorption of DBP on N-Ti/13X/MCM-41.
3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S.
Beck, Nature. 359, 710 (1992).
4. K. S. Hui and C. Y. H. Chao, J. Hazard. Mater. 137, 1135 (2006).
5. A. Jentys, K. Kleestorfer, and H. Vinek, Microporous Mesoporous
Mater. 27, 321 (1999).
6. X. S. Zhao, G. Q. Lu, and A. K. J. Phys. Chem. 101, 6525 (1997).
7. C. Cai, H. Wang, and J. Y. Han, Appl. Surf. Sci. 257, 9802 (2011).
8. A. Matsumoto, H. Chen, K. Tsutsumi, M. Gruen, and K. Unger,
Microporous Mesoporous Mater. 32, 55 (1999).
9. F. K. Shieh, C. T. Hsiao, H. M. Kao, Y. C. Sue, K. W. Lin, C. C.
Wu, X. H. Chen, L. Wan, M. H. Hsu, J. R. Hwu, C. K. Tsung, and
K. C. W. Wu, RSC Advances 3, 25686 (2013)
10. H. Y. Wu, F. K. Shieh, H. M. Kao, Y. W. Chen, J. R. Deka, S. H.
Liao, and K. C. W. Wu, Chemistry-A European Journal 19, 6358
(2013)
11. P. B. Whittaker, X. Wang, W. Zimmermann, K. R. Lieb, and H. T.
Chua, J. Phys. Chem. C. 118, 8350 (2014).
12. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, Bull. Chem.
Soc. Jpn. 85, 1 (2012).
13. X. Jiang, N. Suzuki, B. P. Bastakoti, K. C. Wu, and Yamauchi, Chem.
Asian J. 7, 1713 (2012).
14. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, C. Kevin,
W. Wu, and J. P. Hill, Chem. Lett. 43, 36 (2014).
15. S. T. Kim, K. Saha, C. Kim, and V. M. Rotello, Acc. Chem. Res.
46, 792 (2013).
3.2.6. Recycled Composite Materials
In this study composite materials were recycled by filter-
ꢀ
ing with ethanol and drying at 350 C for 2 hours. The
recycled form of the composite material was then used to
perform photocatalytic degradation of the DBP solution.
Results are shown in the Figure 11. In comparison with
new composite materials, degradation efficiency of recy-
cled material is lower. However, photocatalytic degrada-
tion efficiency is still significant, and was found to be as
high as 70%. But degradation efficiency of 3rd recycled
material only 35%. After several evidence recovered, and
its structure has been destroyed resulting in degradation is
16. S. Ramachandran, J. H. Ha, and D. K. Kim, Catal. Commun. 8, 1934
Delivered by Ingenta to: Chinese University of Hong Kong
IP: 193.9.158.33 On: Tue,1170. (WM20.a0Jy7. )Z.2h0ao1,6D0. M1:.5L0i,:1B9. He, J. L. Zhang, J. Z. Huang, and L. Z.
attenuated.
Copyright: American Scientific Publishers
Zhang, Dyes Pigments 64, 265 (2005).
18. M. Selvaraj, S. W. Song, and S. Kawi, Microporous Mesoporous
Mater. 110, 472 (2008).
19. D. P. Liu, R. Lau, A. Borgna, and Y. H. Yang, Appl. Catal. A
358, 110 (2009).
20. M. Selvaraj and S. Kawi, Catal. Today. 131, 82 (2008).
21. F. González, C. Pesquera, A. Perdigón, and C. Blanco, Appl. Surf.
Sci. 255, 7825 (2009).
22. Y. J. Do, J. H. Kim, J. H. Park, and S. S. Park, Catal. Today 101, 299
(2005).
23. J. L. Wang, Process Biochem. 39, 1831 (2004).
24. L. Davydov, E. P. Reddy, and P. France, J. Catal. 203, 157 (2001).
25. J. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti,
J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603
(1985).
26. G. B. Hong, R. T. Ruan, and C. T. Chang, Chem. Eng. J. 215, 472
(2013).
27. C. Hung, H. Bai, and K. Mani, Sep. Purif. Technol. 64, 265 (2009).
28. G. L. Paz, F. C. M. Silva, M. M. Araújo, F. C. A. Lima, and G. E.
Luz, J. Mol. Struct. 1068, 8 (2014).
29. N. N. Opembe, E. Vunain, A. K. Mishra, K. Jalama, and
R. Meijboom, J. Therm. Anal. Calorim. 115, 1487 (2014).
30. Z. Wang, Y. Jiang, R. Rachwalik, Z. Liu, J. Shi, M. Hunger, and
J. Huang, Chem. Cat. Chem. 12, 3889 (2013).
31. R. Peng, D. Zhao, N. M. Dimitrijevic, T. Rajh, and R. T. Koodali,
J. Phys. Chem. C. 116, 1605 (2012).
32. C. Mahendiran, T. Maiyalagan, P. Vijayan, C. Suresh, and
K. Shanthi, Reac. Kinet. Mech. Cat. 105, 469 (2012).
33. J. H. Park, J. Jurng, G. N. Bae, S. H. Park, J. K. Jeon, S. C. Kim,
J. M. Kim, and Y. K. Park, J. Nanosci. Nanotechnol. 12, 5942
(2012).
3.2.7. DBP Degradation Process Analysis
Results from analysis of the intermediates produced by the
photolysis degradation process by GC-MS are shown in
Table III. The main intermediate products of DBP pho-
tocatalytic degradation are methyl benzoate, monobutyl
phthalate and benzoic acid. From this analysis, intermedi-
ate DBP photocatalytic degradation pathways were deter-
mined and are shown in Figure 12.
4. CONCLUSIONS
In this study, the adsorption efficiency increased with
increasing reaction time. A maximum value was reached
at 20 min and adsorption efficiency was more than 50%.
Degradation efficiency increased with the amount of mate-
rial added and reached a maximum degradation efficiency
of 90%. Excessive catalyst dosage causes increased tur-
bidity of the solution and reduction of light transmittance
and penetration depth, thus inhibiting the composite mate-
rial and efficiency of photocatalytic degradation of DBP.
Degradation efficiency of DBP increased with increasing
reaction time and the best efficiency was found to be more
than 90% at a pH = 6. Degradation efficiency decreased
with increasing initial concentrations of DBP. The result
shows good compliance with the pseudo first order equa-
tion and the regression coefficients for the linear plots were
higher than 0.9616.
34. K. Iwanami, H. Seo, J. C. Choi, T. Sakakura, and H. Yasuda,
Tetrahedron 66, 1898 (2010).
J. Nanosci. Nanotechnol. 16, 6567–6574, 2016
6573