Please do not adjust margins
ChemComm
Page 4 of 4
Classification: General Business Use
DOI: 10.1039/C8CC01814F
COMMUNICATION
Journal Name
possibility. It is important to indicate that excitation with visible
light alone (> 400nm) did not results in any noticeable reaction
products indicating that both TiO2 and Ag need to be excited.
Photochemistry and Photobiology A: Chemistry, 2010,
216, 250-255.
10.
11.
M. A. Nadeem, M. Al-Oufi, A. K. Wahab, D. Anjum and H.
Idriss, ChemistrySelect, 2017, 2, 2754-2762.
I. Majeed, M. A. Nadeem, E. Hussain, G. I. N. Waterhouse,
A. Badshah, A. Iqbal, M. A. Nadeem and H. Idriss,
ChemCatChem, 2016, 8, 3146-3155.
12.
13.
14.
M. A. Nadeem, I. Majeed, G. I. N. Waterhouse and H.
Idriss, Catalysis, Structure & Reactivity, 2015, 1, 61-70.
J. M. R. Muir, Y. Choi and H. Idriss, Physical Chemistry
Chemical Physics, 2012, 14, 11910-11919.
J. Cornejo-Romero, A. Solis-Garcia, S. M. Vega-Diaz and J.
C. Fierro-Gonzalez, Molecular Catalysis, 2017, 433, 391-
402.
15.
16.
17.
A. M. Nadeem, G. I. N. Waterhouse and H. Idriss, Catalysis
Today, 2012, 182, 16-24.
M. A. Nadeem, G. I. N. Waterhouse and H. Idriss, Surface
Science, 2016, 650, 40-50.
M. Murdoch, G.W.N. Waterhouse, M.A. Nadeem, M.A.
Keane, R.F. Howe, J. Llorca and H. Idriss, Nature Chemistry
2011, 3, 489–492.
W. P. Gomes, T. Freund and S. R. Morrison, Journal of The
Electrochemical Society, 1968, 115, 818-823.
O. Micic, Y. Zhang, K. R. Cromack, A. Trifunac and M.
Thurnauer, The Journal of Physical Chemistry, 1993, 97,
13284-13288.
Scheme 1. Schematic representation of Ag/TiO2 energetics upon
light excitation. A Ag particle (blue sphere) is shown at the contact
with the surface of TiO2. Also shown are the oxidation steps of
ethoxide to acetaldehyde upon light excitation. 1. e-h formation
upon light absorption, 2. One electron transfer to the VB (to trap
one hole). 3. One electron transfer for the oxy-radical to the CB
(because it has higher potential energy level than the CB). 4.
Possible excited electron transfer from the CB of TiO2 to the Ag
particle. 4’. Possible “hot electron” transfer from Ag to the CB of
TiO2. 5. Electric field generated upon light absorption by a Ag
particle at the interface with TiO2. 5 may have enough electric field
strength to polarise an intermediate and increase the reaction rate.
18.
19.
20.
21.
22.
23.
24.
A. Yamakata, T.-a. Ishibashi and H. Onishi, The Journal of
Physical Chemistry B, 2002, 106, 9122-9125.
M. A. Henderson, The Journal of Physical Chemistry B.
2005, 109, 12062–12070.
R. T. Zehr and M. A. Henderson, Surface Science, 2008,
602, 2238-2249.
K. Katsiev, G. Harrison, G. Thornton and H. Idriss,
submitted J. Catalysis.
K. Katsiev, G. Harrison, H. Alghamdi, Y. Alsalik, A. Wilson,
G. Thornton and H. Idriss, The Journal of Physical
Chemistry C, 2017, 121, 2940-2950.
L. Gamble, L. S. Jung and C. T. Campbell, Surface Science,
1996, 348, 1-16.
G. C. Bond, M. A. Keane, H. Kral and J. A. Lercher,
Catalysis Reviews, 2000, 42, 323-383.
G. Xiong, R. Shao, T. C. Droubay, A. G. Joly, K. M. Beck, S.
A. Chambers and W. P. Hess, Advanced Functional
Materials, 2007, 17, 2133-2138.
Y. Wan, Y. Li, Q. Wang, K. Zhang and Y. Wu, Int. J.
Electrochem. Sci, 2012, 7, 5204-5216.
H. Alghamdi and H. Idriss, Surface Science 2018, 669, 103-
113.
C. Di Valentin and D. Fittipaldi, The journal of physical
chemistry letters, 2013, 4, 1901-1906.
J. Ø. Hansen, R. Bebensee, U. Martinez, S. Porsgaard, E.
Lira, Y. Wei, L. Lammich, Z. Li, H. Idriss, F. Besenbacher, B.
Hammer and S. Wendt, Scientific Reports, 2016, 6, 21990.
M. A. Khan, L. Sinatra, M. Oufi, O. M. Bakr and H. Idriss,
Catalysis Letters, 2017, 147, 811-820.
B. Dudem, L. K. Bharat, J. W. Leem, D. H. Kim, and J. S. Yu,
ACS Sustainable Chem. Eng. 2018, 6, 1580−1591.
H. Yua, W. Liu, X. Wang, F. Wang, Appl. Catal. B: Environ.
2018, 225, 415–423.
In summary, the addition of Ag to TiO2 resulted in the enhancement
of the photo-thermal catalytic reaction of ethanol when compared
to TiO2 at all investigated temperatures but in two different
temperature regimes. In the [300-500K] temperature-range, the
increase seems to be mainly due to changes in the activation energy
while in the [500-625K], the activation energy is found to be the
same for TiO2 and Ag/TiO2 and the main increase is due to the pre-
factor. It is thus possible that the surface plasmon resonance (SPR)
of Ag induces the polarisation of reaction intermediates involved in
the oxidation and/or in the desorption of final products at
temperatures below 500K. Above this temperature, there is enough
thermal energy and Ag nanoparticles are not needed for their SPR.
25.
26.
27.
Notes and references
1.
A. A. Upadhye, I. Ro, X. Zeng, H. J. Kim, I. Tejedor, M. A.
Anderson, J. A. Dumesic and G. W. Huber, Catalysis
Science & Technology, 2015, 5, 2590-2601.
T. H. Tan, J. Scott, Y. H. Ng, R. A. Taylor, K.-F. Aguey-Zinsou
and R. Amal, ACS Catalysis, 2016, 6, 1870-1879.
J. C. Kennedy Iii and A. K. Datye, Journal of Catalysis,
1998, 179, 375-389.
W. Chanmanee, M. F. Islam, B. H. Dennis and F. M.
MacDonnell, Proceedings of the National Academy of
Sciences, 2016, 113, 2579-2584.
28.
29.
30.
31.
2.
3.
4.
5.
6.
7.
8.
9.
Y. H. Hu, Angewandte Chemie International Edition, 2012,
51, 12410-12412.
A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M.
Anpo, Chemical Physics Letters, 2001, 336, 424-430.
J. He, I. Ichinose, T. Kunitake and A. Nakao, Langmuir,
2002, 18, 10005-10010.
J. He, I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi and N.
Toshima, JACS, 2003, 125, 11034-11040.
M. A. Nadeem, M. Murdoch, G. I. N. Waterhouse, J. B.
Metson, M. A. Keane, J. Llorca and H. Idriss, Journal of
32.
33.
34.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins